Towards faster super-resolution DNA optical mapping using plasmon-enhanced fluor...
Human microbiome science is advancing, showing promise of having important impacts on human health with new insights into disease etiology and general human biology. Accordingly, DNA sequencing platforms have been developed rapidl...
Human microbiome science is advancing, showing promise of having important impacts on human health with new insights into disease etiology and general human biology. Accordingly, DNA sequencing platforms have been developed rapidly, expanding the scope in microbiome research. Among others, optical mapping technique, capable of imaging single DNA molecules provides access to genetic information on single molecules up to ~1 Mbp in length. It uses fluorescence imaging of linearly stretched DNA molecules labelled at specific sites to probe information patterns along the molecules. The precision of the method is further improved by resolving single molecules below the diffraction limit through super-resolution imaging. However, requirement of large photon budget slows down the speed of imaging, as long acquisitions are required to build up sufficient photons for precise localization. This affects the throughput of DNA optical mapping which involves imaging large areas, thereby limiting its capabilities in providing real-time information of the microbiome on daily basis. Enhancing the emission rates from single molecules can overcome this limitation to permit faster image acquisition. Here we propose to use plasmon-enhanced fluorescence by employing substrate made out of wet-chemically synthesized gold nanotriangles for optical mapping of human gut microbiome. Plasmonic nanostructures can confine incident electromagnetic field into small area near their surface leading to strong light absorption and higher emission rates from fluorophores in their vicinity. The use of wet-chemical plasmonic substrate exhibiting strong plasmon resonance can significantly increase the number of photons released from the labelled DNA, allowing faster image acquisition. With the improved speed, the time required for optical mapping analysis can be significantly shortened, enabling longitudinal metagenomic analysis with practical implications for quicker diagnosis and personalized health care.ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.