Pushing the frontiers of biological imaging with genetically encoded fluorescenc...
Pushing the frontiers of biological imaging with genetically encoded fluorescence switches
Biological imaging is essential for revealing the inner workings of living systems. Among the numerous imaging modalities, light microscopy has revolutionized biological research. In addition to advances in optics and detectors, i...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CellStructure
Structural cell biology in situ using superresolution micros...
2M€
Cerrado
RYC-2011-07637
Super-resolution fluorescence microscopy of DNA
184K€
Cerrado
EQC2021-007313-P
Microscopio multifotón vertical para la estimulación y obten...
748K€
Cerrado
UNZA08-4E-022
SISTEMA DE ANALISIS DE FLUORESCENCIA
171K€
Cerrado
EQC2019-006688-P
Microscopio de fluorescencia de hoja de luz (LSFM)
364K€
Cerrado
Información proyecto FLUOSWITCH
Duración del proyecto: 73 meses
Fecha Inicio: 2017-03-30
Fecha Fin: 2023-04-30
Líder del proyecto
SORBONNE UNIVERSITE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Biological imaging is essential for revealing the inner workings of living systems. Among the numerous imaging modalities, light microscopy has revolutionized biological research. In addition to advances in optics and detectors, imaging has benefited from the development of molecular tools to observe biomolecules in action. Although the last decade’s breakthroughs in imaging have led to new discoveries in biology, there are still extraordinary opportunities for basic and clinical research in further advancing imaging capabilities. This project proposes to develop new classes of probes to advance biological imaging and allow the study of biological processes in all their complexity. First, I propose to push the boundaries of multiplexing and super-resolution imaging in living cells developing a new class of fluorogenic probes that act as genetically encoded fluorescence on/off switches. Highly multiplexed images will be built up over sequential activation of orthogonal fluorescence on/off switches, while continuous switching will allow implementing innovative dynamic super-resolution techniques in living cells. Then, I will develop dynamic fluorescence on/off switches enabling to reveal the dynamics of intracellular processes, focusing in particular on the visualization of interaction dynamics in real-time, and the dynamic detection of endogenous molecules (e.g. proteins, nucleic acids) in living cells. The final part will be dedicated to the development of probes acting as molecular integrator switches to identify active cell circuits in whole tissues or organisms through permanent labeling of transiently activated cells. Overall, this project will enable to push back the frontiers of biological imaging providing innovative tools to interrogate quantitatively and comprehensively living systems at the molecular, cellular and network levels.