The dark side of evolution the deleterious mutational landscape of RNA viruses
Mutations are fundamental drivers of evolution. Characterizing how mutations affect fitness is critical across diverse fields: from pathogen biology, to human genetic diseases, and models of population extinction. RNA viruses, not...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
VIRMUT
Variability in the mutation rate of RNA viruses
1M€
Cerrado
1toStopVax
RNA virus attenuation by altering mutational robustness
150K€
Cerrado
PID2021-125063NB-I00
UN ESTUDIO INTEGRATIVO DE LOS EFECTOS DEL FITNESS MUTACIONAL...
169K€
Cerrado
RNAVIRSPE
ANALYSIS OF SPECIATION MECHANISMS IN RNA VIRUSES
217K€
Cerrado
BFU2011-25271
VARIABILIDAD Y EVOLUCION DE LAS TASAS DE MUTACION EN VIRUS D...
175K€
Cerrado
PID2020-113284GB-C22
EXPERIMENTAL EVOLUTION OF AN RNA BACTERIOPHAGE: INFLUENCE OF...
145K€
Cerrado
Información proyecto RNAVirFitness
Duración del proyecto: 63 meses
Fecha Inicio: 2020-02-10
Fecha Fin: 2025-05-31
Líder del proyecto
TEL AVIV UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Mutations are fundamental drivers of evolution. Characterizing how mutations affect fitness is critical across diverse fields: from pathogen biology, to human genetic diseases, and models of population extinction. RNA viruses, notorious for their high mutation rates and rapid generation times, are ideal models for studying the effects of mutations. To date, deleterious mutations (i.e., mutations with a fitness cost) have been understudied as compared to beneficial mutations, mainly since it has been technically unfeasible to sequence each single rare deleterious mutation. Using novel next generation sequencing (NGS) techniques, we and others have recently overcome this gap, and shown that an appreciable proportion of viral genetic diversity is a consequence of a multitude of rare deleterious mutations. Here, we suggest investigating the distribution of fitness effects (DFE) across a diverse array of RNA viruses, spanning representatives of each class of major human pathogens, both in vivo (in patients) and in vitro (in cell culture). Next, we will focus on genetic linkage and context-dependent fitness effects of mutations. We postulate that over- and under-represented sequence contexts may represent signatures of host anti-viral activity. Finally, we will investigate how the DFE changes following an environmental perturbation (physical and metabolic changes, tissue type, and sex of the host). We will explore how the accumulation of deleterious mutations following rapid perturbations may lead to the extinction of the viral population, and how this can be used as a novel strategy to tackle viral epidemics. To this end we will integrate state-of-the-art NGS, population genetics modelling, and reverse genetics validation. Beyond their contribution to evolutionary biology, we anticipate that our results may be harnessed for the design of safe and effective attenuated vaccine strains, and the development of broad-spectrum antiviral therapeutic strategies.