Targeting Norovirus Receptor Interactions at Atomic Resolution
Norovirus infections affect more than 200 million people worldwide every year. Since these viruses are highly contagious and cause epidemic outbreaks norovirus infections constitute a massive economic burden. Currently there are n...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
VIRALMORPHMECH
Towards a complete spatiotemporal model of viral morphogenes...
100K€
Cerrado
FLAVIC DYNAMICS
Labeling Flavivirus capsid protein to unravel its dynamics d...
173K€
Cerrado
BFU2016-74868-P
ARQUITECTURA Y MODULACION DE LA ESTABILIDAD DE CAPSIDAS VIRA...
218K€
Cerrado
BFU2015-65103-R
CONFORMACION TRIDIMENSIONAL E INTERACCIONES DISTALES DEL DOM...
133K€
Cerrado
RTI2018-093935-B-I00
ESTRUCTURAS FUNCIONALES DE ARN EN LOS VIRUS DE LA HEPATITIS...
157K€
Cerrado
virus-DNP-NMR
Development of high field DNP enhanced MAS NMR techniques fo...
185K€
Cerrado
Información proyecto NoroCarb
Líder del proyecto
UNIVERSITAET zu LUEBECK
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
162K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Norovirus infections affect more than 200 million people worldwide every year. Since these viruses are highly contagious and cause epidemic outbreaks norovirus infections constitute a massive economic burden. Currently there are neither vaccination strategies nor therapeutics to cure the infection. We have designed first prototype entry-inhibitors against norovirus infections employing a rational approach based on NMR binding studies with virus like particles (VLPs). In order to develop these prototype inhibitors into potent antivirals information is needed on the thermodynamics and kinetics of binding of entry-inhibitors to the viral coat protein VP1. Binding data will be related to binding topologies on the surface of VP1. We suggest protein NMR experiments with selectively 2H/15N/13C amino acid labeled VP1 to study the relative binding topologies of natural attachment factors and entry-inhibitors. Isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) will yield enthalpies and entropies of binding as well as kinetic data on the binding process. Thermodynamic data in combination with relative binding topologies will then deliver guides for the rational modification of the first generation inhibitors to obtain better affinities. The modified compounds will be subjected to the same set of experiments, and depending on the results the optimization process proceeds in an iterative manner until potent entry-inhibitors are identified. Since VP1 is expressed as a homodimer (P-dimer), potent inhibitor candidates will be linked to a polymeric backbone as described earlier in order to achieve better avidity. Finally, we hope to come up with a first rationally designed entry-inhibitor against norovirus infections.