Super Resolution Imaging and Mapping of Epigenetic Modifications
Epigenetic marks are posttranslational modifications of chromatin that act as gene regulators. Although every cell-type contains the same DNA sequence, the epigenetic marks dictate specific function of each cell-type. Epigenetic m...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SAF2015-64521-R
ANATOMIA FUNCIONAL DE LA ARQUITECTURA EPIGENOMICA DEL CANCER
Cerrado
CHROMAVISION
Super resolution visualisation and manipulation of metaphase...
4M€
Cerrado
EpiMechanism
Mechanisms of Chromatin based Epigenetic Inheritance
2M€
Cerrado
BFU2013-49867-EXP
VISUALIZACION A ALTA RESOLUCION DE LOS MOVIMIENTOS DE DESPLE...
54K€
Cerrado
BFU2015-71984-ERC
REMODELACION DINAMICA DE LA FIBRA CROMATINICA DURANTE LA DIF...
60K€
Cerrado
IJCI-2017-31831
Decoding the structure of chromatin and DNA by super-resolut...
64K€
Cerrado
Información proyecto SRIMEM
Duración del proyecto: 25 meses
Fecha Inicio: 2018-07-20
Fecha Fin: 2020-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Epigenetic marks are posttranslational modifications of chromatin that act as gene regulators. Although every cell-type contains the same DNA sequence, the epigenetic marks dictate specific function of each cell-type. Epigenetic modifications are both heritable and dynamic, and can be treated enzymatically to reverse. The dynamic marks sometimes lead to aberrant gene regulation in cells, causing diseases such as cancer, Alzheimer’s, and diabetes. Therefore, epigenetic state of individual genes can be used to identify the aberrant genes to reverse them.
In this project, a novel assay for simultaneous identification of epigenetic marks and their genomic position is proposed. State-of-the-art DNA-PAINT super-resolution microscopy, developed by Prof. Jungmann, in combination with immunofluorescence in situ hybridization (iFISH) will be used to identify the epigenetic marks in human cells with very high precision (<5 nm). The novelty of this assay is that, for the first time, it will allow to read the epigenetic marks, their genomic and 3D position in the nucleus simultaneously, for precise mapping of the epigenetic state of genes in individual cells. The assay can be used as a tool to identify aberrant marks in cells for diagnosing diseases caused by these modifications. Therefore, it has a high potential for both research in biotechnology and diagnostics.