Stratification of Patients using advanced Integrative modeling of Data Routinely...
Stratification of Patients using advanced Integrative modeling of Data Routinely acquired for diagnosing Rheumatic complaints
Globally 1.Globally 1.71 billion people have musculoskeletal symptoms, the leading contributor to disability. Early disease stratification is important to ensure appropriate care (most suited healthcare provider and best treatment...
Globally 1.Globally 1.71 billion people have musculoskeletal symptoms, the leading contributor to disability. Early disease stratification is important to ensure appropriate care (most suited healthcare provider and best treatment choice). Currently the patient journey to diagnosis and effective treatment is long and inefficient, resulting in persistent disease burden and economical loss. This is due to insufficiently understood relations disease causes and similarities in symptoms between diseases, insufficiently distinguishing tests, trial and error approach in initial treatment.SPIDeRR aims to disentangle the real-life complexity of early diagnosis of rheumatic diseases by considering the complete web of factors influencing patients’ symptoms. SPIDeRR’s approach will go well beyond the state-of-the-art in the following ways:- By identifying different disease groups, requiring different therapies, amongst patients with similar symptoms in contrast to the traditional approach aiming to only capture one disease early. - By integrating all relevant data dimensions from every healthcare level (primary and secondary care and patients seeking advice online). - By translating and applying machine learning techniques from the “omics” field to clinical patient data, which will result in new pipelines for translational data science SPIDERR will deliver three clinical models -a symptom checker for patients -a decision support tool for (primary) care providers providing guiding additional examination and referral decisions-a patient-patient similarity network to optimise diagnostic groups in rheumatology and support treatment decisionTo achieve this we additionally deliver solutions for data integration and shared analyses though GDPR compliant digital research environment and federated learning pipelines.Finally we will test the acceptability of the models through stakeholders studies and provide an implementation scene tailored to current healthcare in Europe.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.