Stochastic pattern formation in biochemical systems
There are basically three mechanisms for spatial pattern formation in systems of two coupled reaction-advection-diffusion equations; the Turing patterns, patterns created through reaction kinetics, and chemotaxis patterns. We are...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MTM2010-18318
MODELIZACION Y ANALISIS MATEMATICO DE MODELOS DISCRETOS Y CO...
45K€
Cerrado
MTM2015-69875-P
PROBLEMAS DE DIFUSION, REACCION Y CAMPO DE FASES APLICADOS A...
82K€
Cerrado
DSYREKI
Dynamical Systems and Reaction Kinetics Networks
Cerrado
STOANDMULMODINBIO
Stochastic and Multiscale Modelling in Biology
625K€
Cerrado
StochDetBioModel
Stochastic and deterministic modelling of biological and bio...
232K€
Cerrado
PGC2018-101896-B-I00
FISICA NO LINEAL Y ESTOCASTICA DE LAS INTERACCIONES REGULADO...
48K€
Cerrado
Información proyecto STOPATT
Duración del proyecto: 34 meses
Fecha Inicio: 2020-03-12
Fecha Fin: 2023-01-29
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
There are basically three mechanisms for spatial pattern formation in systems of two coupled reaction-advection-diffusion equations; the Turing patterns, patterns created through reaction kinetics, and chemotaxis patterns. We are interested in the reaction-diffusion equation with underlying chemotaxis. The terminus chemotaxis refers to oriented movements of cells (or an organism) in response to a chemical gradient. The topic of the proposal to investigate the logistic grow equation with underlying chemotaxis. This system will be perturbed by a stochastic noise term, modelling neglected fluctuations or random perturbations from outside. The stochastic term leads to new phenomena, e.g. bifurcation are smeared out, metastability may happen, or sudden shifts to other, possible undesired, states. First, the existence and uniqueness of the solution should be investigated; then the long term behaviour will be analysed. Here, also the dynamical behaviour should be characterised. The third point, we will focus on is the numerical approximation of the system.