Statistical machine learning for complex biological data
This interdisciplinary project aims to develop new statistical and machine learning approaches to analyze high-dimensional, structured and heterogeneous biological data. We focus on the cases where a relatively small number of sam...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TIN2011-22826
MODELOS MARKOVIANOS GRAFICOS DE ORDEN LIMITADO PARA DATOS DE...
42K€
Cerrado
INFERNET
New algorithms for inference and optimization from large sca...
900K€
Cerrado
MTM2010-16087
INFERENCIA ESTADISTICA BAJO INCERTIDUMBRE EN LOS MODELOS: AP...
7K€
Cerrado
BES-2009-029143
MODELOS GRAFICOS PROBABILISTICOS EN PROBLEMAS DE CLASIFICACI...
43K€
Cerrado
MLFPM2018
Machine Learning Frontiers in Precision Medicine
4M€
Cerrado
FJCI-2016-29677
Machine learning and statistical methods applied to big data...
50K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This interdisciplinary project aims to develop new statistical and machine learning approaches to analyze high-dimensional, structured and heterogeneous biological data. We focus on the cases where a relatively small number of samples are characterized by huge quantities of quantitative features, a common situation in large-scale genomic projects, but particularly challenging for statistical inference. In order to overcome the curse of dimension we propose to exploit the particular structures of the data, and encode prior biological knowledge in a unified, mathematically sound, and computationally efficient framework. These methodological development, both theoretical and practical, will be guided by and applied to the inference of predictive models and the detection of predictive factors for prognosis and drug response prediction in cancer.