Innovating Works

STROLL

Financiado
Soft-exoskeleton suit To Restore Autonomous Locomotion
Imagine putting on a pair of pants, it feels soft like ordinary clothing fabrics, but unlike any other, this one is made of high-performance robotic soft actuators and soft sensors. This is my vision of future exoskeletons being j... Imagine putting on a pair of pants, it feels soft like ordinary clothing fabrics, but unlike any other, this one is made of high-performance robotic soft actuators and soft sensors. This is my vision of future exoskeletons being just like everyday clothing, light, soft, and powerful enough to fully support the wearer. The loss of the ability to walk is devastating for many suffering from stroke, spinal cord injury, and alike. An ergonomic, light-weight exoskeleton can surely help these patients to walk again autonomously. This is challenging due to large gaps between conventional rigid body dynamic-based walking control and soft structures because such an exoskeleton has to integrate high-performance soft mechatronics, to perform walking to an unprecedented extent. I am uniquely qualified to achieve this due to my extensive experience in the fields of robotics and neuroengineering, as well as my leading role in the engineering of world-leading high-performance humanoid robots which incorporate control, modelling, and experimental evaluation. STROLL will develop a soft wearable robotic exoskeleton to restore the walking capability of patients with lower-body paralysis. The soft wearable exoskeleton that I propose to develop will combine ground-breaking innovations in advanced high-performance textile-based actuators, lower-body tactile sensors, and advanced locomotion control. STROLL will investigate new control strategies and methods for tactile-based control for balancing and walking. As its ultimate goal, STROLL will take on the ambition to enable a lower-limb paralysed person to take a stroll in the park with an autonomous soft textile exoskeleton. Despite the methodological difficulties and the uncertainty of the results, the project is more than worth pursuing, as the pay-off is highly significant to benefit the lives of millions of patients suffering from lower-limbs disorders. ver más
31/08/2028
TUM
2M€
Duración del proyecto: 63 meses Fecha Inicio: 2023-05-08
Fecha Fin: 2028-08-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-05-08
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2022-ADG: ERC ADVANCED GRANTS
Cerrada hace 2 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
TECHNISCHE UNIVERSITAET MUENCHEN No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5