Simulation-enhanced High-density Magnetomyographic Quantum Sensor Systems for De...
Simulation-enhanced High-density Magnetomyographic Quantum Sensor Systems for Decoding Neuromuscular Control During Motion
Being able to decode neural signals that control skeletal muscles with high accuracy will enable scientific breakthroughs in diagnostics and treatment, including early detection of neurodegenerative diseases, optimising personalis...
Being able to decode neural signals that control skeletal muscles with high accuracy will enable scientific breakthroughs in diagnostics and treatment, including early detection of neurodegenerative diseases, optimising personalised treatment or gene therapy, and assistive technologies like neuroprostheses. This breakthrough will require technology that is able to record signals from skeletal muscles in sufficient detail to allow the morpho-functional state of the neuromuscular system to be extracted. No existing technology can do this. Measuring the magnetic field induced by the flow of electrical charges in skeletal muscles, known as Magnetomyography (MMG), is expected to be the game-changing technology because magnetic fields are not attenuated by biological tissue. However, the extremely small magnetic fields involved require extremely sensitive magnetometers. The only promising option is novel quantum sensors, such as optically pumped magnetometers (OPMs), because they are small, modular, and can operate outside of specialised rooms. Our vision is to use this technology and our expertise in computational neuromechanics to decode, for the first time, neuromuscular control of skeletal muscles based on in vivo, high-density MMG data. For this purpose, we will design the first high-density MMG prototypes with up to 96 OPMs and develop custom calibration techniques. We will record magnetic fields induced by contracting skeletal muscles at the highest resolution ever measured. Such data, combined with the advanced computational musculoskeletal system models, will allow us to derive robust and reliable source localisation and separation algorithms. This will provide us with unique input for subject-specific neuromuscular models. We will demonstrate the superiority of the data over existing techniques with two applications; signs of ageing and neuromuscular disorders and show that it is possible to transfer these methodologies to clinical applications.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.