Science and Technology for Near Earth Object Impact Prevention
Impacts of near-Earth objects (NEOs) have contributed to mass extinctions and evolution, and it is a proven fact that NEOs will continue to hit the Earth at irregular intervals in the future, with the potential for catastrophic da...
Impacts of near-Earth objects (NEOs) have contributed to mass extinctions and evolution, and it is a proven fact that NEOs will continue to hit the Earth at irregular intervals in the future, with the potential for catastrophic damage to life and property. With the experience and results gained from the NEOShield project we are now very well equipped to address all aspects of this call, including the development of a European strategy for future research and mission-related endeavours. Our work packages are integrated into a coherent programme of research and development. Building on NEOShield experience we will further develop our GNC systems to allow increased targeting accuracy and relative velocity of a kinetic impactor spacecraft into a small (e.g. 100-300m diameter) asteroid, develop autonomous spacecraft control systems to facilitate navigation close to a low-gravity, irregularly shaped asteroid, demonstrate techniques for precise NEO orbit determination, and develop mechanisms for the collection of material samples. We will carry out astronomical observations of NEOs to improve our understanding of their physical properties, concentrating on the smaller sizes of most concern for mitigation purposes, and to identify further objects suitable for missions for physical characterisation, and NEO deflection demonstration. On the scientific front, our statistical analyses of recently published NEO survey data have been very successful: we will explore the promising avenues that have opened up during our NEOShield research. We will also perform detailed analyses of relevant individual objects (e.g. potentially hazardous objects) on the basis of published data from different observing techniques (radar, infrared, spectroscopy, etc.), in addition to new data obtained. Modelling work and computer simulations will be enhanced to explore the effects of large spin rates, shattered and rubble-pile structures, and mineralogy on an object’s response to a deflection attempt.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.