Scaling Methods for Discrete and Continuous Optimization
One of the most important open questions in optimization is to find a strongly polynomial algorithm for linear programming. The proposed project aims to tackle this problem by combining novel techniques from two different domains:...
ver más
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
One of the most important open questions in optimization is to find a strongly polynomial algorithm for linear programming. The proposed project aims to tackle this problem by combining novel techniques from two different domains: discrete optimization and continuous optimization. We expect to contribute to exciting recent developments on the interface of these two fields.
We use and develop new variants of the classical scaling technique. From the discrete optimization side, recent work of the PI on generalized flows extends classical network flow theory and opens up new domains for strongly polynomial computability beyond integer constraint matrices. We will apply this novel scaling technique to obtain strongly polynomial algorithms for broad classes of linear programs.
From the continuous optimization side, we aim to build the theory of geometric rescaling algorithms for linear and convex optimization. This approach combines first-order methods with geometric rescaling techniques to obtain a new family of polynomial-time algorithms. We expect to devise variants efficient in theory and in practice, which we will use in a wide range of applications.
Our discrete and continuous techniques will have important applications in submodular function minimization. We will develop new, efficient algorithms for the general problem as well as for specific applications in areas such as machine learning and computer vision.
In summary, the project will develop novel approaches for some of the most fundamental optimization problems. It will change the landscape of strongly polynomial computability, and make substantial progress towards finding a strongly polynomial algorithm for linear programming.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.