Convex relaxations, such as linear and semidefinite programming, constitute one of the most powerful techniques for designing efficient algorithms, and have been studied in theoretical computer science, operational research, and a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
POEMA
Polynomial Optimization Efficiency through Moments and Alge...
4M€
Cerrado
BES-2011-045720
TECNICAS PARA LA EVALUACION Y OBTENCION DE SOLUCIONES ESTABL...
43K€
Cerrado
ICOPT
Fundamental Problems at the Interface of Combinatorial Optim...
1M€
Cerrado
OptApprox
Strong Convex Relaxations with Optimal Approximation Guarant...
1M€
Cerrado
QIP
Towards a Quantitative Theory of Integer Programming
2M€
Cerrado
MTM2010-15383
OPTIMIZACION EN PROGRAMACION MATEMATICA Y APLICACIONES
60K€
Cerrado
Información proyecto PowAlgDO
Duración del proyecto: 67 meses
Fecha Inicio: 2016-11-11
Fecha Fin: 2022-06-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Convex relaxations, such as linear and semidefinite programming, constitute one of the most powerful techniques for designing efficient algorithms, and have been studied in theoretical computer science, operational research, and applied
mathematics. We seek to establish the power convex relaxations through the lens of, and with the extensions of methods designed for, Constraint Satisfaction Problems (CSPs).
Our goal is twofold. First, to provide precise characterisations of the applicability of convex relaxations such as which problems can be solved by linear programming relaxations. Secondly, to derive computational complexity consequences such as for which classes of problems the considered algorithms are optimal in that they solve optimally everything that can be solved in polynomial time. For optimisation problems, we aim to characterise the limits of linear and semidefinite programming relaxations for exact, approximate, and robust solvability. For decision problems, we aim to characterise the limits of local consistency methods, one of the fundamental techniques in artificial intelligence, which strongly relates to linear programming relaxations.
Recent years have seen some remarkable progress on characterising the power of algorithms for a very important type of problems known as non-uniform constraint satisfaction problems and their optimisation variants. The ultimate goal of this
project is to develop new techniques and establish novel results on the limits of convex relaxations and local consistency methods in a general setting going beyond the realm of non-uniform CSPs.