The carboxyl polyether ionophores (CPIs) is a class of >150 complex natural products. Belonging to the most complicated of Nature's secondary metabolites, they are darlings within total chemical synthesis, however, the biological...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2015-74621-JIN
DISEÑO DE BIOCIDAS INNOVADORES A PARTIR DE LA ELUCIDACION DE...
204K€
Cerrado
AMDERM
The action mechanism of human antimicrobial peptide dermcidi...
309K€
Cerrado
AmCaLiStat
Modular Design of Bacterial Lipid Mimics for Next Generation...
174K€
Cerrado
CTQ2017-88948-P
LIPOAMINOACIDOS Y LIQUIDOS IONICOS BIOCOMPATIBLES PARA EL DE...
145K€
Cerrado
CTQ2008-06200
DISEÑO, DESARROLLO SINTETICO, ESTUDIO BIOFISICO Y EVALUACION...
48K€
Cerrado
Duración del proyecto: 66 meses
Fecha Inicio: 2020-02-19
Fecha Fin: 2025-08-31
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The carboxyl polyether ionophores (CPIs) is a class of >150 complex natural products. Belonging to the most complicated of Nature's secondary metabolites, they are darlings within total chemical synthesis, however, the biological role of these agents is obscure. Due to their canonical function of equilibrating ion-gradients across biological membranes, CPIs are thought to be unspecific and largely uninteresting. Here, I will advocate and demonstrate the opposite position: that not only are these compounds extremely interesting with respect to their complex effects on cells, they also harbor a unique anti-microbial activity that should be a strong priority as we stagger towards a post-antibiotic era. With RECYPION my team and I will draw these compounds back into the spotlight. We will ask the following fundamental questions: 1. Can we develop a synthesis-paradigm that will significantly expand the CPI-chemical space to fully explore their anti-microbial activities? 2. What are the molecular determinants that control the antibiotic-potential of the CPIs, and how do these relate to the mechanism of ion-transport? 3. Can we uncover the cellular activities of CPIs – perhaps even dark activities that do not involve ion-transport? We will pioneer a CPI-synthesis-approach based on the ability to recycle complex components from highly abundant CPI-family members. To do so, we will develop novel chemical transformations to deconstruct these molecules which may find broader use in a world that is increasingly focused on how to preserve resources. We will provide the first real experimental characterization of the molecular mechanism by which CPIs mediate ion transport by using ultrafast surface-sensitive spectroscopy on membrane-resident CPIs along with unprecedented structural insight using ultra-high field NMR. Finally, we will use an image-based screening technology called morphological profiling to reveal completely new cellular activities of the CPIs.