The overarching goal of ReNewQuantum is to renew the mathematical foundation behind quantum phenomena.
We aim to construct a recursive and exact new approach to quantum theory. Quantum theory is one of the pillars of modern scienc...
The overarching goal of ReNewQuantum is to renew the mathematical foundation behind quantum phenomena.
We aim to construct a recursive and exact new approach to quantum theory. Quantum theory is one of the pillars of modern science. Its success stretches from elementary quantum mechanical models, developed a century ago by quantization of classical mechanics, to advanced quantum field theories such as the standard model of particle physics, which is the quantization of a gauge theory. However, a precise and universal mathematical formulation of the quantization procedure is still lacking. In addition, there are very few analytic methods in Quantum Mechanics and in Quantum Field Theory. They are typically based on approximation schemes which often lead to quantitative and even qualitative failures in our descriptions.
In response to these shortcomings, the main objective of ReNewQuantum is to construct a completely new
mathematical approach to quantization and to quantum systems. This quantum theory will provide:
- a global, explicit and recursive description of the series of quantum corrections,
- access to exact quantum regimes beyond perturbation theory,
- a well founded mathematical theory underlying the quantization procedure, based on geometric structures,
and applicable to quantum field theory and string theory.
ReNewQuantum will take the lead among the world scientific community in building this new theory of
quantum physics. The researchers behind ReNewQuantum have already made important contributions along
these directions. The construction of a recursive and exact new approach to quantum theory with the stated
properties will only be possible through their joint synergetic effort and a combination of their deep mathematical
and physical expertises, including geometry, topology and the mathematical theory of quantization (Andersen,
Kontsevich), and quantum mechanics, quantum field theory, random matrix theory and string theory (Eynard,
Mariño).ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.