Quantum Materials: Harnessing Helicates and Radicals in Synergy
This is a multidisciplinary project that combines original organic and inorganic chemical synthesis with advanced electronic resonance spectroscopy to produce the next generation of multifunctional molecular quantum processor prot...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PGC2018-098613-B-C21
SPIN-ORBIT DRIVEN PHYSICS AT SURFACES AND INTERFACES OF QUAN...
145K€
Cerrado
ATOMQUANT
On-Surface Atomic Spins with Outstanding Quantum Coherence
2M€
Cerrado
ezEmbedMagnet
Quantum Chemical Design of Molecular Magnets
176K€
Cerrado
AQE2D
Atomic Quantum Emitters in 2D Frameworks
2M€
Cerrado
CONSPIRA
Coherent control of spin chains in graphene nanostructures
3M€
Cerrado
MAT2013-46785-P
ESPINTRONICA EN SISTEMAS DE DIRAC EN 2 DIMENSIONES
144K€
Cerrado
Información proyecto QuMaHHARIS
Duración del proyecto: 41 meses
Fecha Inicio: 2024-05-03
Fecha Fin: 2027-10-31
Descripción del proyecto
This is a multidisciplinary project that combines original organic and inorganic chemical synthesis with advanced electronic resonance spectroscopy to produce the next generation of multifunctional molecular quantum processor prototypes.
Quantum technologies will embody the second quantum revolution, bound to change dramatically the landscape of information processing, communications and nanotechnology, thereby bringing profound changes to society. This could be realized through the coherent manipulation of the electronic or nuclear spin degrees of freedom. In this context, the growing importance of spin-bearing molecules as the potential physical platform to realize quantum technologies demands the design and precise characterization of the required molecular components with the appropriate functions. The objective of this proposal is to generate molecular qubits bearing functional components for their implementation. These components will be, a) single ion magnets (SIMs) to engender a local magnetic field for individual qubit operation, b) spin crossover (SCO) centers to provide a mechanism for tuning the qubit quantum coherence using light, c) molecular units exhibiting magnetocaloric effect (MCE) to generate a local mechanism for qubit refrigeration, or d) ancillary qubits to realize multiqubit quantum gates within molecules. A first period at Windsor University (Canada) will be dedicated to the synthesis of hybrid main group radical/coordination chemistry compounds. A six-month secondment at the National High Magnetic Laboratory in Florida (USA) will allow deep characterization of the compounds prepared and quality training in pulsed EPR. The final part at the University of Barcelona (Spain) will consist in incorporating the radical systems produced at Windsor as components of supramolecular assemblies. The last part will allow also advanced characterization with the local pulsed EPR infrastructurQuantum Materials: Harnessing Helicates and Radicals in Synergy