Coherent control of spin chains in graphene nanostructures
Elementary nuclear and electronic spins are called to be key components in the second quantum revolution. Their atomic-scale integration into scalable platforms with tunable interactions is a demand that I will address in CONSPIRA...
Elementary nuclear and electronic spins are called to be key components in the second quantum revolution. Their atomic-scale integration into scalable platforms with tunable interactions is a demand that I will address in CONSPIRA by synthetizing graphene architectures with interacting spin chains, using customized on-surface reactions of organic precursors, and by controlling their quantum state through microwave spectroscopies.
I envision the formation of collective magnetic states through the assembly of interacting electronic and nuclear spins in periodic arrays with atomically precise spacings. Through rational design and synthesis strategies, we will tune spin interactions via the graphene host and hyperfine coupling, with the goal of bringing the quantum state of the arrays into different regimes of energy, coherence, and topology.
To access the broad energy range of such multiscale interacting system and to probe its quantum dynamics, we will combine two antagonist experimental techniques like Scanning Tunnelling Microscopy (STM) and Cavity Quantum Electrodynamics (QED). This will be realized by incorporating superconducting coplanar waveguide resonators (CWRs) as substrate of a low temperature STM.
We will use QED techniques to couple the resonant states of spin chains with microwave photons of the resonator, while the STM tip acts as a local gate. The MHz and picometer resolution of this new type of spectrometer will enable us to study the quantum coherence of the spin arrays and undertake the coherent control of distant nuclear states entangled through the electronic spin system, a potential system for QED-based quantum computation.
CONSPIRA will provide a new platform for quantum spins, and methods to address and manipulate their coherent state. The combination of QED and STM represents a ground-breaking experimental development, which is called to boost studies of general correlated phenomena in condensed matter physics.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.