The ability to create and control connected quantum states established the advent of quantum information technologies (Q-IT). Manipulation of the electron spin associated with colour centres in solid state crystals is one of the p...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RYC2019-028429-I
Magnetic Molecules for Quantum Information and Spintronics
309K€
Cerrado
PGC2018-097831-B-I00
FENOMENOS CRITICOS, SIMETRIA Y FASES TOPOLOGICAS EN SISTEMAS...
30K€
Cerrado
ATOMQUANT
On-Surface Atomic Spins with Outstanding Quantum Coherence
2M€
Cerrado
ABSOLUTESPIN
Absolute Spin Dynamics in Quantum Materials
2M€
Cerrado
TSuNAMI
Trans Spin NanoArchitectures from birth to functionalities...
2M€
Cerrado
CONSPIRA
Coherent control of spin chains in graphene nanostructures
3M€
Cerrado
Información proyecto AQE2D
Duración del proyecto: 72 meses
Fecha Inicio: 2020-09-04
Fecha Fin: 2026-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The ability to create and control connected quantum states established the advent of quantum information technologies (Q-IT). Manipulation of the electron spin associated with colour centres in solid state crystals is one of the pillar technologies that could eventually push Q-IT beyond cryogenic environments. Exploitation of the full potential of these atomic qubit systems is, however, hampered by two key challenges: the lack of atomistic insights into their properties, and the ability to place them with the required fidelity and atomic spatial precision.
Here I propose to converge recent breakthrough developments in the synthetic control of two-dimensional (2D) materials and ultra-fast, single-atom resolving probes to overcome these challenges. Specifically, I will develop a platform for electro-optically addressable spin qubits (Atomic Quantum Emitters, AQEs) in 2D materials based on atomic dopants in transition metal dichalcogenide (TMD) monolayers and molecular spin systems in 2D covalent organic frameworks (2D-COFs). These systems will provide an ideal platform to generate AQEs by chemical design, to control the mesoscopic environment averting variability between emitters, to achieve atomically precise spatial placement, to identify and eliminate decoherence channels, and to develop high-fidelity scalable pumping schemes.
The proposed construction of a spin-polarized ultrafast THz scanning probe microscope with optical detection capabilities will enable the direct correlation of structural, electronic, magnetic, and optical properties of individual AQEs with simultaneous atomic spatial resolution and picosecond time resolution. This will open new frontiers in the spatio-temporal characterization and control of solid-state AQE systems.
The atomically precise engineering of 2D quantum materials and unprecedented microscopic insights into AQEs bear transformative potential for the field of quantum sensing, communication and information processing.