Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Developmen...
Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development
The cerebral cortex consists of an extraordinary number and great diversity of neurons. Yet, how the cortical entity, with all its functional neuronal circuits, arises from the neural stem cells (NSCs) in the developing neuroepith...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TRANSITION
Temporal reconstruction of tRNA abundance during cortical de...
196K€
Cerrado
BFU2014-58631-P
ESTUDIO DE LA NEUROGENESIS EN CEREBRO EMBRIONARIO Y ADULTO D...
145K€
Cerrado
HUMANE
Transcriptional characterization of human postnatal and adul...
204K€
Cerrado
ProTeAN
Production and Testing of humAn derived Neurons and brain or...
149K€
Cerrado
BFU2017-89861-P
DESCODIFICACION DE LAS BASES MOLECULARES DE LA NEUROGENESIS...
133K€
Cerrado
BFU2016-76295-R
MECANISMOS DE CONTROL DE LA NEUROGENESIS Y EL TAMAÑO DE LOS...
145K€
Cerrado
Información proyecto LinPro
Duración del proyecto: 60 meses
Fecha Inicio: 2017-11-16
Fecha Fin: 2022-11-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The cerebral cortex consists of an extraordinary number and great diversity of neurons. Yet, how the cortical entity, with all its functional neuronal circuits, arises from the neural stem cells (NSCs) in the developing neuroepithelium is a major unsolved question in Neuroscience. Radial glia progenitors (RGPs) are responsible for producing nearly all neocortical neurons and a certain fraction of cortical glia including astrocytes. Our recent efforts provide evidence for a high degree of non-stochasticity and thus deterministic nature of RGP behavior in the mammalian neocortex. However, the cellular and molecular mechanisms controlling RGP lineage progression through proliferation, neurogenesis and especially gliogenesis are unknown. In a pursuit to obtain definitive insights into these fundamental questions we assess RGP lineage progression at the unprecedented single cell resolution, using the unique genetic MADM (Mosaic Analysis with Double Markers) technology. MADM offers an unparalleled approach to visualize and concomitantly manipulate sparse clones and small subsets of genetically defined neurons. Within the scope of this project we will use multidisciplinary experimental approaches to establish a research program with the following major objectives: We will 1) Functionally dissect the relative contribution of cell-autonomous intrinsic signaling and cell-non-autonomous effects in RGP lineage progression; 2) Define the principles of lineage progression in human RGPs in situ using MADM technology in cerebral organoid system; 3) Decipher the logic of glia lineage progression in the neocortex. The ultimate goal of the proposed research is to establish a definitive quantitative framework and mechanistic model of lineage progression in cortical NSCs. As such, the proposed research shall precipitate into extensive conceptual progress regarding the fundamental cellular and molecular principles of cerebral cortex development.