Plasma-ACtivated hydroGEL: new frontiers solutions in cardiac regenerative medic...
Plasma-ACtivated hydroGEL: new frontiers solutions in cardiac regenerative medicine
Heart diseases represent the main leading cause of mortality in EU and other industrialized countries. The development of minimally-invasive therapies to treat cardiovascular injuries is the subject of intense investigation by the...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
STEM CELL HYDROGELS
3D Hydrogel Microwell Arrays to Control Cardiac Differentiat...
282K€
Cerrado
4DPrintedHeart
4D Printing of Human Vascularized Cardiac Patches and Hearts...
2M€
Cerrado
HYDROZONES
Bioactivated hierarchical hydrogels as zonal implants for ar...
13M€
Cerrado
FIS2017-85954-R
HIDROGELES MAGNETICOS SUPRAMOLECULARES PARA MEDICINA REGENER...
133K€
Cerrado
ChondroGEL
Advanced Protein Based Materials for Cartilage Repair
213K€
Cerrado
Multi-SIP Hydrogel
A multifunctional self immolative hydrogel for accelerating...
174K€
Cerrado
Información proyecto PACGEL
Duración del proyecto: 33 meses
Fecha Inicio: 2022-06-08
Fecha Fin: 2025-03-31
Líder del proyecto
POLITECNICO DI TORINO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
173K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Heart diseases represent the main leading cause of mortality in EU and other industrialized countries. The development of minimally-invasive therapies to treat cardiovascular injuries is the subject of intense investigation by the cardiac regenerative medicine community. Moreover, in vitro models of human cardiac pathological tissues mimicking disease-specific oxidative conditions are demanded for understanding pathological mechanisms at different disease stages, and for the development and preclinical validation of novel therapies, at reduced costs and in compliance with 3Rs (Reduction, Refinement, Replacement) principle.
PACGEL aims at the design of novel plasma jet-activated hydrogels based on biocompatible polymers, to be exploited as: (i) injectable stimulating systems to promote cardiac tissue regeneration and (ii) in vitro models of diseased cardiac tissue with tunable oxidative conditions. The biological effect will depend on the doses and types of reactive oxygen and nitrogen species encapsulated in the hydrogels, modulated by the plasma jet treatment parameters. The objectives are: (1) to identify the minimal reactive species concentration (threshold limit) above which oxidative effects prevail, by in vitro tests with relevant human cardiac cells; 2) to develop plasma jet-activated hydrogels with regenerative potential; 3) to design in vitro 3D bio-printed tissue models mimicking different stages of human cardiac diseases. My expertise in Plasma Medicine and Chemistry, the supervisor’s consolidated competence in biomaterials design, tissue engineering and cardiac regenerative medicine, my proof-of-concept preliminary results and the availability of all the needed facilities and training opportunities at the Host Institution will ensure the research progress.
Furthermore, PACGEL will address one major societal challenge such as the treatment of age-related cardiac diseases exploiting green technologies, thus achieving still a greater impact on society.