4D Printing of Human Vascularized Cardiac Patches and Hearts for Regenerative Me...
4D Printing of Human Vascularized Cardiac Patches and Hearts for Regenerative Medicine
Heart diseases are a major cause of death in the Western world. No sustainable regenerative therapy is currently available, and cardiac transplantation is the only treatment. However, the scarcity of matching heart donors raises t...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PLEC2021-008127
Biofabricación avanzada multifunción en 3D para la generació...
204K€
Cerrado
PACGEL
Plasma-ACtivated hydroGEL: new frontiers solutions in cardia...
173K€
Cerrado
HEART PATCH
Development of a Bioengineered Heart Patch for the Treatment...
100K€
Cerrado
PiezoMac
Piezoceutical biomaterial scaffolds for immunomodulatory-bas...
3M€
Cerrado
ESPOIR
European clinical study for the application of regenerative...
7M€
Cerrado
RTI2018-096320-B-C21
BIOINGENIERIA DE CONSTRUCTOS BASADOS EN BIOMATERIALES PARA L...
182K€
Cerrado
Información proyecto 4DPrintedHeart
Duración del proyecto: 62 meses
Fecha Inicio: 2021-04-08
Fecha Fin: 2026-06-30
Líder del proyecto
TEL AVIV UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Heart diseases are a major cause of death in the Western world. No sustainable regenerative therapy is currently available, and cardiac transplantation is the only treatment. However, the scarcity of matching heart donors raises the need to develop new regenerative medicine approaches. Recently, our group has shown the use of patient-specific cells and personalized hydrogels to 3D print vascularized cardiac patches. Moreover, we have developed printing technologies which allowed to print small-scale, cellularized human hearts with the major blood vessels. Despite these and other advances in the field, the premature hearts are very basic, and their ability to pump blood and function in vivo is still considered futuristic, requiring several major breakthroughs. In this proposal, I plan to go far beyond the current state-of-the-art and overcome some of the remaining challenges in the field. We will develop novel 4D printing approaches, allowing to print human cardiac patches and whole functional hearts, including ventricles, atria, pacemakers, conduction system and extensive vasculature, in high resolution. We will decipher the mechanisms underlying the maturation of the printed tissues and hearts, which are essential for the synchronous contraction and heart pumping. Functionality of the printed structures will be compared to that of native cardiac tissues and whole natural hearts by examining their reaction to chronotropic and cardiotoxic drugs, proving their additional potential to serve as reliable, predictive drug testing platforms. The printed tissues and hearts will be then heterotopically transplanted, and their anastomosis with the host blood vessels, contraction and blood pumping capabilities in vivo will be tested. Finally, we will demonstrate the ability of the printed, vascularized cardiac patches to improve heart function. Successful completion of this ambitious project will provide a sustainable regenerative therapy for a myriad of devastating maladies.