Piezoceutical biomaterial scaffolds for immunomodulatory-based myocardial repair
Cardiac injury in the form of a myocardial infarction leads to cardiac muscle death and replacement scar tissue that cannot compensate lost heart tissue. This disease does not improve with traditional drugs and places significant...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-096320-B-C21
BIOINGENIERIA DE CONSTRUCTOS BASADOS EN BIOMATERIALES PARA L...
182K€
Cerrado
HEART PATCH
Development of a Bioengineered Heart Patch for the Treatment...
100K€
Cerrado
REBORN
REMODELLING OF THE INFARCTED HEART: PIEZOELECTRIC MULTIFUNCT...
4M€
Cerrado
RTI2018-096320-B-C22
DESARROLLO DE NUEVOS BIOMATERIALES Y SISTEMAS ASOCIADOS PARA...
218K€
Cerrado
SAF2013-42528-R
NUEVAS ESTRATEGIAS EN REGENERACION CARDIACA COMBINANDO CELUL...
242K€
Cerrado
SAF2011-30067-C02-01
DESARROLLO DE BIOIMPLANTES PARA LA REGENERACION CARDIACA CON...
254K€
Cerrado
Información proyecto PiezoMac
Duración del proyecto: 62 meses
Fecha Inicio: 2024-03-13
Fecha Fin: 2029-05-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Cardiac injury in the form of a myocardial infarction leads to cardiac muscle death and replacement scar tissue that cannot compensate lost heart tissue. This disease does not improve with traditional drugs and places significant burden on healthcare budgets worldwide; with a reduced quality of life for patients, often leading to heart failure. Current engineered cardiac patches do not reduce inflammation and do not integrate in a sufficient manner to compensate the pumping power lost with the heart tissue.
The PiezoMac patch differs fundamentally from patches reported up to now. It will contain an optimised piezoelectric capability that will yield electric fields generated by the stretching of the heart. This electric field stimulation will be optimised to drive immunomodulate and regeneration of the cardiac muscle. The shape of the patch is predesigned using finite element modelling to conform the directional dependent stretching of the heart wall; with information of patient anatomy and extent of heart attack damage derived from X-ray CT and MRI scans. These smart patches will be 3D printed (using melt electrowriting) into accurate microfibrous ordered patches whose density, micro-orientation and fibre laydown will be informed using in silico modelling of piezoelectric generation and mechanical anisotropy. We will shortlist candidate mesh designs to match the anisotropy of the heart using finite element analysis, and refine the design process using a Bayesian Optimisation approach to strike a balance between mechanical anisotropy and piezoelectric output, and ultimately halt cardiac deterioration. This pragmatic and rational approach gathers and advances cutting-edge technologies in this interdisciplinary project to address a significant unmet need in healthcare today.