Peptide-based Supramolecular Co-assembly Design: Multiscale Machine Learning Modeling Approach
Supramolecular self-assembly is a fundamental process abundantly utilized by nature and emerging functional materials technologies ranging from drug delivery to soft semiconductor devices. Recently, an increased focus has been pla...
Supramolecular self-assembly is a fundamental process abundantly utilized by nature and emerging functional materials technologies ranging from drug delivery to soft semiconductor devices. Recently, an increased focus has been placed on the multicomponent peptide co-assembly as they often display unique emergent properties that can dramatically expand the functional utility of peptide-based materials. Still, the full potential is hindered by the combinatorial complexity of peptide-based materials and our inability to predict the co-assembled structures and, therefore, properties and functionality. Machine Learning models built on top of Molecular Dynamics simulations are ideally suited to decipher the co-assembly behavior. However, the existing molecular models either suffer from severe approximations disabling them to give accurate predictions or are computationally too expensive to transverse the material space. Addressing this trade-off, I aim to develop a computational framework for fast and accurate peptide co-assembly prediction using as a key strategy a multiscale construction of Graph Neural Network-based models that can predict the peptide co-assembly. This innovative approach will enable me to reach the following objectives: (1) obtain unprecedented molecular insight into the peptide co-assembly process inaccessible to experiments, (2) uncover novel candidate materials, and (3) provide rational design rules for multicomponent peptide-based supramolecular materials. In a broader context, increased insight into cooperative behavior will bring us closer to understanding and ultimately synthetically replicating the exceptional functionality of living systems, while the methodological advancements of data-driven molecular modeling will be of paramount importance in other areas of biomaterial engineering and beyond.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.