Nature uses self-assembly to build fascinating supramolecular materials, such as microtubules and protein filaments, that can self-heal, reconfigure, adapt or respond to specific stimuli in dynamic way. Building synthetic (polymer...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
MuST ArtEM
Multicomponent Supramolecular Structures as Artificial Enzym...
188K€
Cerrado
PID2021-127533NB-I00
SIMULACION MOLECULAR DE ORGANIZACION AUTONOMA Y DIRIGIDA DE...
73K€
Cerrado
POLION
Mesoscopic modelling of synthetic and biological ionic macro...
312K€
Cerrado
SASSYPOL
Hierarchical Self Assembly of Polymeric Soft Systems
4M€
Cerrado
Star Polymers
When Soft Matter Goes Really Soft A New Paradigm for Star...
176K€
Cerrado
Información proyecto DYNAPOL
Duración del proyecto: 82 meses
Fecha Inicio: 2018-12-21
Fecha Fin: 2025-10-31
Líder del proyecto
POLITECNICO DI TORINO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Nature uses self-assembly to build fascinating supramolecular materials, such as microtubules and protein filaments, that can self-heal, reconfigure, adapt or respond to specific stimuli in dynamic way. Building synthetic (polymeric) supramolecular materials possessing similar bioinspired properties via the same self-assembly principles is interesting for many applications. But their rational design requires a detailed comprehension of the molecular determinants controlling the assembly (structure, dynamics and properties) that is typically very difficult to reach experimentally.
The aim of this project is to obtain structure-dynamics-property relationships to learn how to control the dynamic bioinspired properties of supramolecular polymers. I propose to unravel the molecular origin of the bioinspired behavior through massive multiscale modeling, advanced simulations and machine learning. First, we will develop ad hoc molecular models to study monomer assembly and the supramolecular structure of various types of self-assembled materials on multiple scales. Second, using advanced simulation approaches we will characterize the supramolecular dynamics of these materials (dynamic exchange of monomers) at high (submolecular) resolution. We will then study bioinspired properties such as the ability of various supramolecular materials to self-heal, adapt or reconfigure dynamically in response to specific stimuli. Our models will be systematically validated by comparison with the experimental evidence from our collaborators. Finally, we will use machine learning approaches to analyze our high-resolution simulations and to identify the key monomer features that control and determine the structure, dynamics and dynamic properties of a supramolecular material (i.e., structure-dynamics-property relationships). This research will produce unprecedented insight and fundamental models for the rational design of artificial dynamic materials with controllable bioinspired properties.