Pathogen responsive hydrogels release antimicrobial vesicles for local infection...
Pathogen responsive hydrogels release antimicrobial vesicles for local infection treatment
The rise of bacterial resistance against antibiotic drugs is becoming the leading cause for morbidity and mortality worldwide. In Europe alone, up to 33,000 people die each year from infections with resistant bacteria. Current ant...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto Gels4Bac
Duración del proyecto: 69 meses
Fecha Inicio: 2020-11-03
Fecha Fin: 2026-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The rise of bacterial resistance against antibiotic drugs is becoming the leading cause for morbidity and mortality worldwide. In Europe alone, up to 33,000 people die each year from infections with resistant bacteria. Current antibiotic therapy often suffers from low selectivity, adverse side effects in other organs and impaired ability to overcome bacterial barriers. These problems limit the efficacy of our antibiotic arsenal. Local and effective eradication of bacterial infections is of utmost importance to avert the formation of new resistances.
My research centres on naturally derived vesicles. All living cells and microorganisms produce these nanoparticles and equip them with unique features for transport and targeted delivery of molecules. I have previously discovered a new group of bacteria-derived vesicles with low cytotoxicity and inherent antibiotic activity. Upon contact with culture supernatant from pathogens, bacteria produce higher potent antimicrobial vesicles. Now, I would like to incorporate these vesicles into hydrogels – Gels4Bac – that respond to pathogenic factors in the infection environment. Once the hydrogel encounters these factors, antimicrobial vesicles are selectively and locally released in the presence of specific pathogens. The local application reduces time until treatment, adverse side effects and unspecific killing of beneficial microbiota.
Gels4Bac will create new options for selectively treating infectious dispositions. Stimulation of vesicle producing bacteria with pathogen-derived components may open an on-demand customisable, quick and cost-effective approach for treatment. In addition, it creates new avenues for the discovery of novel antimicrobial agents besides current screening and medicinal chemistry. Such platform technology is imperative to equip Europe in its fight against the rise of infections with resistant bacteria, and will boost Europe's scientific competitiveness in infection therapy.