Painting the landscape of translational control of gene expression through meta...
Painting the landscape of translational control of gene expression through meta analysis of genome wide data sets
Translational control determines the rate at which mRNAs are synthesized into proteins; regulates biological processes ranging from apoptosis to memory; and shows deregulation in diseases such as fibrosis and cancer. In cancer, dy...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ERNBPTC
Expression regulatory networks beyond promoters and transcr...
1M€
Cerrado
MYCNEXT
Connecting the activities of c Myc in genome regulation cel...
2M€
Cerrado
LINKER
Elucidating transcriptional rewiring on hematological malign...
173K€
Cerrado
BFU2015-68741-P
PAPEL DE LAS PROTEINAS DE UNION A RNA EN TRADUCCION Y TUMORI...
415K€
Cerrado
DeCRyPT
Deciphering Cis Regulatory Principles of Transcriptional reg...
2M€
Cerrado
Información proyecto TRANSLATOMICS
Líder del proyecto
KAROLINSKA INSTITUTET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
100K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Translational control determines the rate at which mRNAs are synthesized into proteins; regulates biological processes ranging from apoptosis to memory; and shows deregulation in diseases such as fibrosis and cancer. In cancer, dysregulated translational control is associated with worse prognosis in most sold cancer. Despite this, integrated genome wide knowledge of translational control and its regulatory mechanisms is lacking. My new methods for data analysis and mechanistic discoveries allow, for the first time, efficient genome wide studies of translational control. By using all publicly available genome-wide data sets and these methods we will characterize the landscape of translational control by identifying genes and pathways that are regulated translationally; groups of genes that constitute functional translational modules and show co-regulation across many biological conditions; key genes that are highly connected (nodes) and under translational control; network structures that are regulated at the translational level; and mechanisms that mediate such regulation. This information will be used to compare many biological processes to generate an integrated perspective of translational control. Through functional experiments employing both gene specific and regulatory mechanism focused approaches we will link translational control, genes, mechanisms for regulation and biological processes to unravel a new level of understanding of translational control. Such knowledge will be applicable in future studies of how dysregulation of translational control contributes to human disease.