Innovating Works

SiCNeutronFlash

Financiado
Out-of-field neutron dosimetry for FLASH therapy based on SiC sensors Cancer is a major public health problem worldwide. According to the latest research, 20% of people will develop cancer at some point during their lifetime. Radiotherapy (RT) is the medical use of ionizing radiation to treat cancer... Cancer is a major public health problem worldwide. According to the latest research, 20% of people will develop cancer at some point during their lifetime. Radiotherapy (RT) is the medical use of ionizing radiation to treat cancer. About 52% of cancer patients receive RT at least once during their treatment. During the last years, new RT treatment modalities are rapidly being researched, one of the most promising is the Ultra High Dose-Rate Radiotherapy (UHDR) or FLASH therapy, where the delivered dose rate is several orders of magnitude higher than the conventional one. This approach has been found to elicit significant sparing of healthy tissues with equal probability of tumor control. One of the challenges to validate and enable the clinical implementation of FLASH is the development of active dosimetry systems that allow accurate dose measurements and beam monitoring. The experience gained in RT traditional treatments shows that secondary neutrons can produce a not insignificant undesirable parasitic dose to healthy tissue and critical organs that can induce late effects. Therefore, the measurement of neutron flux and its spectrum is key to determining potential risks in FLASH therapy. The goal of this project is the development of a novel matrix of active neutron dosimeters based on Silicon Carbide (SiC) diodes covered with different types of neutron conversion layers and moderators for characterizing the neutron contribution out-of-field in FLASH conditions. SiC has many advantages, e.g., low noise, insensitivity to visible light and temperature variations, higher radiation hardness than silicon. The host group has been the first worldwide in obtaining a SiC detector with a linear relationship between the charge collected and the dose up to 11 Gy/pulse (1.5 um pulse). To the best of our knowledge, there are no active neutron dosimeters to measure out-of-field neutron doses in FLASH conditions. We propose to create the first one in the field. ver más
30/11/2025
Presupuesto desconocido
Duración del proyecto: 31 meses Fecha Inicio: 2023-04-12
Fecha Fin: 2025-11-30

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-04-12
HORIZON EUROPE No se conoce la línea exacta de financiación, pero conocemos el organismo encargado de la revisión del proyecto.
Líder del proyecto
AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGA... No se ha especificado una descripción o un objeto social para esta compañía.