Innovating Works

MTM2015-65888-C4-1-P

Financiado
ORTOGONALIDAD, TEORIA DE LA APROXIMACION Y APLICACIONES EN FISICA MATEMATICA
EL OBJETIVO DE ESTE PROYECTO ES INVESTIGAR PROPIEDADES ANALITICAS DE POLINOMIOS ORTOGONALES RESPECTO A VARIOS MODELOS DE ORTOGONALIDAD, ASI COMO SUS APLICACIONES EN FISICA MATEMATICA (MODELOS Y APLICACIONES EN LOS QUE LOS EQUIPOS... EL OBJETIVO DE ESTE PROYECTO ES INVESTIGAR PROPIEDADES ANALITICAS DE POLINOMIOS ORTOGONALES RESPECTO A VARIOS MODELOS DE ORTOGONALIDAD, ASI COMO SUS APLICACIONES EN FISICA MATEMATICA (MODELOS Y APLICACIONES EN LOS QUE LOS EQUIPOS QUE CONFIGURAN EL PROYECTO TIENEN UNA AMPLIA Y ACREDITADA EXPERIENCIA): (A) ORTOGONALIDAD MATRICIAL: CON RESPECTO A UNA MATRIZ DE MEDIDAS DEFINIDA POSITIVA EN LA RECTA REAL; (B) ORTOGONALIDAD EN VARIAS VARIABLES Y SOBOLEV: EN ESTE SEGUNDO CASO INTERVIENEN LAS DERIVADAS DE LOS POLINOMIOS AFECTADAS CON PESOS; (C) ORTOGONALIDAD RESPECTO A MEDIDAS SOPORTADAS EN LA CIRCUNFERENCIA UNIDAD Y SUS APLICACIONES EN SISTEMAS INTEGRABLES; (D) ORTOGONALIDAD RESPECTO A MEDIDAS VECTORIALES Y SUS APLICACIONES EN LA IMPLEMENTACION DE FORMULAS DE CUADRATURA SIMULTANEA Y CONVERGENCIA HERMITE-PADE; (E) POLINOMIOS ORTOGONALES EXCEPCIONALES Y BIESPECTRALES, Y LAS CONEXIONES ENTRE ELLOS Y CON LOS PROBLEMAS FISICOS QUE MODELIZAN LOS OPERADORES DIFERENCIALES Y EN DIFERENCIAS DE LOS QUE SON AUTOFUNCIONES, TAMBIEN SE CONSIDERARAN OTROS CAMPOS RELACIONADOS: APROXIMACION RACIONAL (PRINCIPALMENTE APROXIMANTES DE PADE Y SUS EXTENSIONES), METODOS COMPUTACIONALES PARA FUNCIONES ESPECIALES RELEVANTES EN MODELOS FISICO-MATEMATICOS, TEORIA DE NUMEROS, SERIES DE FOURIER Y DE DIRICHLET, ESPECIAL RELEVANCIA TENDRAN LAS APLICACIONES EN FISICA MATEMATICA, POR UN LADO EN SISTEMAS INTEGRABLES, DADO QUE LOS FLUJOS, PARAMETRIZADOS POR TIEMPOS CONTINUOS O DISCRETOS, SE CORRESPONDEN CON POLINOMIOS ORTOGONALES CON RESPECTO A MEDIDAS SUJETAS A DEFORMACIONES DE ACUERDO CON ESTOS PARAMETROS TEMPORALES, SERAN POR ELLO DE INTERES LA VARIACION TEMPORAL DE ESTOS POLINOMIOS ORTOGONALES, SUS COEFICIENTES, LOS DE SUS RECURRENCIAS Y SUS NUCLEOS DE CHRISTOFFEL-DARBOUX, PUES NOS DAN SOLUCIONES A ESTAS ECUACIONES NO LINEALES INTEGRABLES, EN ESTE PROYECTO SE EXTENDERAN LAS CONEXIONES CON SISTEMAS INTEGRABLES A UNA GRAN PARTE DE LA AMPLIA GAMA DE TIPOLOGIAS DE POLINOMIOS ORTOGONALES ANTES CITADOS, ENRIQUECIENDO DE ESTA FORMA EL TRATAMIENTO Y LA PERSPECTIVA TANTO DE SU CONOCIMIENTO COMO DE SUS APLICACIONES, TAMBIEN ESTUDIAREMOS LAS APLICACIONES DE LOS POLINOMIOS ORTOGONALES EXCEPCIONALES A LOS MODELOS MECANICO-CUANTICOS QUE TIENEN ASOCIADOS, CUYO ESPECTRO Y AUTOFUNCIONES SE PUEDEN CALCULAR DE MANERA EXACTA MEDIANTE DICHOS POLINOMIOS, ESPECIAL INTERES RECIBIRAN LOS PROBLEMAS BIESPECTRALES PARA OPERADORES EN DIFERENCIAS (Y Q-DIFERENCIAS), DADA LA EQUIVALENCIA DE ESTOS CON LOS POLINOMIOS EXCEPCIONALES DISCRETOS VIA LA DUALIDAD DE LAS FAMILIAS CLASICAS DISCRETAS DE POLINOMIOS ORTOGONALES, LAS TECNICAS UTILIZADAS SON, FUNDAMENTALMENTE, DE ANALISIS MATRICIAL, TEORIA DEL POTENCIAL, ANALISIS DE FOURIER, TEORIA DE OPERADORES, INTERPOLACION Y ANALISIS COMPLEJO, OTRAS APLICACIONES CIENTIFICAS Y TECNOLOGICAS QUE TAMBIEN SE EXPLORARAN TIENEN RELACION CON SISTEMAS FISICOS Y BIOLOGICOS COMO MACROMOLECULAS Y MOTORES MOLECULARES, ASI COMO FILTRADO DE SEÑALES, CADENAS DE MARKOV DISCRETAS DONDE LAS INTERACCIONES NO SE REDUCEN A LOS VECINOS MAS CERCANOS, Y PROBLEMAS DE TIME AND BAND LIMITING, POLINOMIOS ORTOGONALES\TEORÍA DE APROXIMACIÓN\FUNCIONES ESPECIALES\SERIES DE FOURIER Y DIRICHLET\SISTEMAS INTEGRABLES ver más
01/01/2015
US
54K€
Perfil tecnológico estimado

Línea de financiación: concedida

El organismo AGENCIA ESTATAL DE INVESTIGACIÓN notifico la concesión del proyecto el día 2015-01-01
Presupuesto El presupuesto total del proyecto asciende a 54K€
Líder del proyecto
UNIVERSIDAD DE SEVILLA No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores 3670