Optimizing Selectivity in C H Functionalization Through Computational Design
The activation of inert C-H bonds lies at the heart of organic chemistry. In particular C-H activation using transition metal catalysis has made a profound impact on complex molecule synthesis, but the area remains important for f...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CHOPTOCOMP
Optimizing Selectivity in C H Functionalization Through Comp...
231K€
Cerrado
CTQ2016-74881-P
REACCIONES DE ACTIVACION C-H CATALIZADAS POR METALES DE TRAN...
90K€
Cerrado
CTQ2015-66954-P
HERRAMIENTAS PARA EL CONTROL DE LA SELECTIVIDAD EN CATALISIS...
338K€
Cerrado
DiPipe
Direct remote C H functionalization in piperidine derivative...
178K€
Cerrado
CTQ2008-01784
PROCESOS SELECTIVOS DE ACTIVACION DE ENLACES CH A TRAVES DE...
109K€
Cerrado
Información proyecto CHOPTOCOMP
Líder del proyecto
NANKAI UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
15K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The activation of inert C-H bonds lies at the heart of organic chemistry. In particular C-H activation using transition metal catalysis has made a profound impact on complex molecule synthesis, but the area remains important for future discovery. At present the utility of synthetic methods based on C-H activation is hampered by the inherent difficulty of being able to selectively functionalize a single C-H bond in the presence of many others. Thus the ability to perform predictably site-selective C-H functionalizations on a given C-H bond in a complex substrate would be transformative for chemical synthesis.
In this proposal we propose to perform computational studies on Pd-catalyzed C-H functionalization reactions, to uncover the inherent electronic bias of substrate structures on the site-selectivity. Calculations will be performed using density functional theory to characterize the mechanisms and catalytic cycle for Pd-catalyzed arylation of aromatic and heteroaromatic substrates. We will also develop quantitative models of reactivity and selectivity to deliver a greater understanding of the process, which will be used to generate predictions. The result will be a reliable predictive method with which to rationally design substrates and catalysts to deliver improved selectivities in C-H functionalizations.