Nonequilibrium Many Body Control of Quantum Simulators
The ability to control quantum matter in a state of equilibrium is a milestone of 20th-century physics. A major goal of modern physics is to extend this knowledge to out-of-equilibrium systems. Located at the boundary between equi...
The ability to control quantum matter in a state of equilibrium is a milestone of 20th-century physics. A major goal of modern physics is to extend this knowledge to out-of-equilibrium systems. Located at the boundary between equilibrium and nonequilibrum, quantum simulation appears particularly suitable for this purpose. Using periodic drives, quantum simulators can experimentally emulate phenomena hitherto inaccessible in conventional materials, such as artificial gauge fields or topological and dynamically localized matter. However, our understanding of how to manipulate systems exposed to intense nonequilibrium drives is in its infancy, especially regarding strongly interacting models.
We propose to overcome the current limitations by combining ideas from quantum control and artificial intelligence (AI) algorithms. We will develop a new theoretical framework for nonadiabatic many-body state control on top of strong periodic drives underlying the optimal manipulation of ordered prethermal states of matter without equilibrium counterparts. Understanding this many-body dynamics will improve cutting-edge manipulation techniques in cold atoms, trapped ions, superconducting circuits, and quantum solids.
We will add reinforcement learning (RL), one of the most promising techniques in AI, to the quantum entanglement control toolbox. Deep RL has the potential to push the state-of-the-art of (dis-)entangling quantum states since it is capable of identifying effective degrees of freedom even when no underlying physical structure is immediately obvious.
Discovering guiding principles of physics for many-body control away from equilibrium has the potential to reveal new connections across quantum dynamics, statistical mechanics, optimal control, and machine learning. The proposed research establishes a missing link on the roadmap for designing future materials and technologies based on nonequilibrium processes in condensed matter, quantum optics, and quantum computing.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.