"We intend to study new directions in free probability theory with high potential to lead to breakthroughs in our understanding of random matrix models and operator algebras. We will drive forward the study of ""free analysis"" wh...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ICNCP
Independence and Convolutions in Noncommutative Probability
194K€
Cerrado
Moments
Moment inequalities in matrix algebras
183K€
Cerrado
NCGQG
Noncommutative geometry and quantum groups
1M€
Cerrado
LCFTdual
Logarithmic conformal field theory as a duality between Brau...
186K€
Cerrado
MTM2009-14464-C02-02
METODOS COMPUTACIONALES Y HOMOLOGICOS EN ALGEBRAS NO ASOCIAT...
21K€
Cerrado
MTM2009-14464-C02-01
METODOS COMPUTACIONALES Y HOMOLOGICOS EN ALGEBRAS NO ASOCIAT...
144K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"We intend to study new directions in free probability theory with high potential to lead to breakthroughs in our understanding of random matrix models and operator algebras. We will drive forward the study of ""free analysis"" which is intended to provide a whole new mathematical theory for variables with the highest degree of non-commutativity and which lies at the crossroad of many exciting mathematical subjects.
More specifically, the objective of the proposal is to extend our armory for dealing with non-commutative distributions and to attack some of the fundamental problems which are related to such distributions, like: the existence and properties of the limit of multi-matrix models; the isomorphism problem for free group factors, and more generally, properties of free entropy and free entropy dimension as invariants for von Neumann algebras.
The main directions are:
(i) classifying non-commutative symmetries and describing the effect of invariance under such quantum symmetries for non-commutative distributions; this will rely on our recent theory of easy quantum groups
(ii) proving regularity properties for non-commutative distributions; for this we will develop the theory of free Malliavin calculus
(iii) providing algorithms for calculating non-commutative distributions; this will rely on advances of the analytic theory of operator valued free convolutions and will in particular lead to a master algorithm for the computation of asymptotic eigenvalue distributions for general random matrix problems"