New Adaptive and BUCkling-driven COmposite aerospace structures
The NABUCCO project aims to develop radically new concepts of adaptive and buckling-driven composite structures for next generation aircraft. In aeronautics, buckling is generally avoided because it causes stiffness reduction, lar...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto NABUCCO
Duración del proyecto: 59 meses
Fecha Inicio: 2023-05-01
Fecha Fin: 2028-04-30
Líder del proyecto
POLITECNICO DI MILANO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The NABUCCO project aims to develop radically new concepts of adaptive and buckling-driven composite structures for next generation aircraft. In aeronautics, buckling is generally avoided because it causes stiffness reduction, large deformations, and can result in a catastrophic collapse. Instead, NABUCCO considers buckling no longer as a phenomenon to be avoided, but as a design opportunity to be explored for its ground-breaking potentialities. The idea is to use buckling drawbacks in a positive way, to conceive, design and realize adaptive structures and aircraft morphing wings. These new, lighter, flexible structures will be designed considering all the potentialities offered by composite materials, thanks also to novel manufacturing processes, and modifying the boundary conditions to govern when buckling occurs and to tune multiple non-traditional post-buckling stable configurations. These structures will be able to adapt their shape during different flight conditions, acting on two of the biggest levers for the future of clean aviation: reduced weight and increased efficiency. The concepts proposed in NABUCCO will require a step change for what concerns the design, analysis and optimization methodologies, since the design space will be significantly enlarged and the designer will need the ability to identify, manage and control the buckling phenomena. These solutions can be obtained by adopting an integrated design approach established on a multi-disciplinary thinking. A strongly coupled computational-experimental framework will be developed based on novel analytical formulations, artificial intelligence techniques for large multi-objective optimizations, high-fidelity simulation methodologies and advanced test techniques.