Nanoparticle and Multielement Quantification in Single Cells Exploring New Anal...
Nanoparticle and Multielement Quantification in Single Cells Exploring New Analytical Methods
Genetically identical cells observed as a population can be significantly heterogeneous when studied individually, and this heterogeneity can change the behavior of entire cell populations. In particular, some trace elements play...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
UNCM15-CE-3076
EQUIPO DE PLASMA DE ACOPLAMIENTO INDUCTIVO ACOPLADO A ESPECT...
155K€
Cerrado
CTQ2011-23038
DESARROLLO DE METODOS DE ESPECTROMETRIA DE MASAS PARA LA CAR...
116K€
Cerrado
PID2021-123203OB-I00
ETIQUETADO DE PARTICULAS INDIVIDUALES: NUEVAS ESTRATEGIAS DE...
145K€
Cerrado
EQC2018-005222-P
Espectrómetro de Masas Atómica con Plasma Acoplado por Induc...
261K€
Cerrado
RTI2018-094605-B-I00
DESARROLLO DE UN METODO DE ICP-MS PARA ANALIZAR CELULAS INDI...
85K€
Cerrado
NIBEA
Nano Impacts for Biomedical and Environmental Analysis
150K€
Cerrado
Información proyecto NanoMuSiC
Duración del proyecto: 31 meses
Fecha Inicio: 2021-03-23
Fecha Fin: 2023-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Genetically identical cells observed as a population can be significantly heterogeneous when studied individually, and this heterogeneity can change the behavior of entire cell populations. In particular, some trace elements play important roles in cell processes. Classical analytical methods to measure (trace) elemental composition in cells (naturally present or taken up by them, e.g. nanoparticles) provide information only about the average of the cell population thus disregarding important cell-to-cell variances. In this context, single-cell inductively coupled plasma-mass spectrometry has been gaining special attention to evaluate elements and nanoparticles as well as multiparameters in single cells. However, our currently available information and quantitative data on multielemental composition and uptake of toxic elemental species and metal oxide nanoparticles in single cells are still scarce. NanoMuSiC project will develop new sensitive and accurate analytical methods based on the coupling between a microdroplet generator to the state-of-the-art inductively coupled plasma-time of flight-mass spectrometry for multielement quantification and for evaluating the uptake of elemental species and metal-based nanoparticles in single cells. These methods will be applied to proof-of-concept ecotoxicological applications employing diatoms (single cells) and environmentally relevant elemental species and nanoparticles. Through these developed methodologies and results, the NanoMuSiC project will provide new insights on cellular elemental composition and elemental species-cell and nanoparticle-cell interactions. Besides, they will support further investigations of effects and potential risks of elemental species and nanoparticles to the environment and human health, two relevant issues within EU Commission priorities for 2019-24, e.g. European Green Deal strategy to protect the environment and human health by cutting pollution.