Nanomechanics of proteins involved in viral and bacterial infections
Viruses and bacteria utilize proteins to attach and infect cells and tissues. Viruses have envoloped proteins that especifically recongnize receptors in the surface of the target cells. HIV-1 recognices receptor CD4 in the surface...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BFU2015-71964-ERC
NANOMECANICA DE LAS INFECCIONES VIRICAS Y BACTERIANAS
60K€
Cerrado
BIO2016-77390-R
CONTROL DE LA NANOMECANICA DE INFECCIONES VIRICAS Y BACTERIA...
206K€
Cerrado
BIO2013-46163-R
NANOMECANICA DE PROTEINAS IMPLICADAS EN INFECCIONES MICROBIA...
145K€
Cerrado
BES-2017-081090
CONTROL DE LA NANOMECANICA DE INFECCIONES VIRICAS Y BACTERIA...
93K€
Cerrado
PRE2020-094264
NANOMECANICA DE LAS INFECCIONES MICROBIANAS: HACIA LA MECANO...
Cerrado
PID2019-109087RB-I00
NANOMECANICA DE LAS INFECCIONES MICROBIANAS: HACIA LA MECANO...
230K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Viruses and bacteria utilize proteins to attach and infect cells and tissues. Viruses have envoloped proteins that especifically recongnize receptors in the surface of the target cells. HIV-1 recognices receptor CD4 in the surface of T cell throghout its envolope glycoprotein gp120. In the case of bacteria, they attach to tissues using long filament called pilus. Bacterial pilus type 1 is composed of several protein subunit arranged in chain, FimA-FimG-FimG-FimH. The more external domain, FimH, is the adhesin binding domain that establishes the mechanical anchoring to tissues. Both, bacterial and viral proteins withstand mechanical forces than can go from few piconewtons to hundreds. However, very little is known about how force modify the structure and features of these proteins and ultimately how its affects infection. In this project we aim to investigate the effect of mechanical forces in the anchoring proteins and its role during attachment. We will concentrate in viral receptors CD4 and bacterial fimbriae proteins (Fim). We will use a novel atomic force spectometer that allows us to apply calibrated forces to a single protein molecule. This technique allows also monitoring chemical reaction under force such as the reduction of disulfide bonds or the binding of peptides and antibodies. These processes are known to be implicated in the infection of viruses and bacteria and they may have a mechanical origin. We will use bioinformatics and high-throughout screening techniques to identify molecules that alter the nanomecanichs of these anchoring proteins and that can potentially be used to prevent infections.