Nearly all engineering structures are exposed to harmful environments and alternating mechanical loads during their service life. The combination of these two factors, corrosion and fatigue, accelerates damage and frequently leads...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
JDC2023-050492-I
New computational strategies for the study of fatigue fractu...
72K€
Cerrado
BIA2011-24258
MODELADO MULTIESCALA DEL COMPORTAMIENTO MECANICO Y DE FALLO...
145K€
Cerrado
PHYCRACKS
Physics of cracks and damage
192K€
Cerrado
DPI2016-80389-C2-1-R
PREDICCION PROBABILISTICA DE DAÑO Y FALLO A FATIGA: APLICACI...
113K€
Cerrado
BIA2010-18863
SURFACE MOBILITY OF HIGH STRENGTH STEELS IN SOLUTION: FROM T...
113K€
Cerrado
RTI2018-096428-B-I00
INFLUENCIA DE LA CORROSION Y SU MORFOLOGIA EN EL COMPORTAMIE...
91K€
Cerrado
Información proyecto SIMCOFAT
Duración del proyecto: 29 meses
Fecha Inicio: 2021-03-05
Fecha Fin: 2023-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Nearly all engineering structures are exposed to harmful environments and alternating mechanical loads during their service life. The combination of these two factors, corrosion and fatigue, accelerates damage and frequently leads to catastrophic failures much before the expected lifespan of the component. Understanding and predicting corrosion fatigue is considered the ultimate challenge in mechanics of materials, due to its complex multi-disciplinary and multi-scale nature. This proposal aims at achieving a breakthrough by developing new ultra-efficient computational tools that will enable resolving the microstructural character of the problem. Advanced multi-physics and damage (phase field) models will be combined with a new class of algorithms, so-called Fast Fourier Transforms (FFT), that can reduce the computational cost of resolving the microstructural behaviour of materials by several orders of magnitude. The predictions from this new generation of physically-based models will be compared with the outcome of a complementary experimental campaign and ultimately used to predict corrosion fatigue in an industrial context. The feasibility of this Action is strengthened by the applicant's pioneering work in fatigue FFT modelling and the complementary expertise of the host group in environmentally assisted damage, phase field modelling and experimental characterisation.