Multiscale modeling and simulation of bacterial colonies
Some bacteria are known to grow in colonies that form complicated geometrical patterns. In order to develop such a colony, bacteria will sense and respond to their local environment by secreting and absorbing peptides, proteins, p...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto BACTERIAL COLONY SIM
Líder del proyecto
BAR ILAN UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
100K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Some bacteria are known to grow in colonies that form complicated geometrical patterns. In order to develop such a colony, bacteria will sense and respond to their local environment by secreting and absorbing peptides, proteins, pheromones and other chemotactic or quorum sensing molecules. Furthermore, under adverse conditions, bacteria can sporulate, alternate its shape, or look for better DNA. Past work has focused mainly on the biological aspects involved in these processes. However, much less is known on the dynamics of the colony as a whole. In particular, the dynamics of the colony may be completely different than that of the single cell and it is not clear how the bacterial activity at the microscopic scale is related to the collective macroscopic behavior. A recent mathematical model that I developed explains an interesting experiment in which sibling bacterial colonies grown on low-nutrients plates mutually kill each other through secretions released to the media. Simulation results where compared with experimental data. The work was recently submitted to PNAS. The purpose of the proposed research is to develop new and improved models and innovative simulation methods for connecting between the microscopic behavior of individual bacteria and that of the colony as a whole. New algorithms are developed in order to solve the models numerically. Such an interdisciplinary research is crucial for understanding complex biological phenomena. There are many interesting and important directions for future research. For example, new experiments suggest that surface tension may play a key role in the dynamics of the colony. Another example is the addition of newly discovered knowledge on the mechanism bacteria use to decide between sporulation (going into a dormant phase) and competence (mutation into a different form of strand).