From single cells to microbial consortia: bridging the gaps between synthetic ci...
From single cells to microbial consortia: bridging the gaps between synthetic circuit design and emerging dynamics of heterogeneous populations
A key turning point in the evolution of life was the transition from single-cell to multicellular organisms and the optimization of fitness via division of labour and specialization. Similarly, microorganisms have evolved equivale...
ver más
CONSYN
Contextualizing biomolecular circuit models for synthetic bi...
2M€
Cerrado
PID2021-122158NB-I00
DESENTRAÑAR PRINCIPIOS DE DISEÑO DE COLECTIVOS DE CELULAS SI...
206K€
Cerrado
ECOPROSPECTOR
Mapping vast functional landscapes with single-species resol...
2M€
Cerrado
PID2020-117271RB-C21
REGULACION DINAMICA MULTI-ESCALA EN INGENIERIA METABOLICA: C...
198K€
Cerrado
DEUSBIO
Deciphering and Engineering the overlooked but Universal phe...
1M€
Cerrado
FIS2016-78781-R
COMPUTACIONES COMPLEJAS PARA SOBREVIVIR: HACIA LA INGENIERIA...
45K€
Cerrado
Últimas noticias
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
A key turning point in the evolution of life was the transition from single-cell to multicellular organisms and the optimization of fitness via division of labour and specialization. Similarly, microorganisms have evolved equivalent strategies by forming communities or consortia. Division of labour in isogenic microbial populations is often implemented by mechanisms that create or act upon population heterogeneity to diversify functionality. Rational design in synthetic biology, on the other hand, is focused on the engineering of gene circuits with deterministically predictable functionality within single cells. While synthetic biology has certainly come a long way, predictable functionality of circuits in growing microbial populations still remains elusive or limited to tightly constrained operating conditions. We will develop novel mathematical methods to characterize and control the dynamics of synthetic gene circuits within growing microbial populations. We will develop a modelling framework and novel computational methods that take both stochasticity of single-cell processes and consequences of heterogeneity for population dynamics into account. On the mathematical side, this necessitates coupling single-cell stochastic processes to state dependent population processes such as growth or selection. We will develop methods for parameter inference, experimental design and control for such models. This will enable the construction of models that can be used to design synthetic circuits that function as specified within growing populations and that can be deployed to regulate single-cell processes such that desirable dynamics emerge at the scale of populations and consortia. We will apply the methodology for bioproduction problems in which proteins that are hard to fold need to be produced. Overproducing such proteins impairs cellular growth, which creates couplings between single-cell and population processes and raises the need to feedback control production.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.