MultimoDal tEnsor fuSion and Completion foR patient-taIlored catheter aBlation o...
MultimoDal tEnsor fuSion and Completion foR patient-taIlored catheter aBlation of persistEnt atrial fibrillation
Tensor analysis plays a central role in signal processing and machine learning for the representation, analysis, fusion, and classification of data. Responsible for up to 25% of brain strokes, atrial fibrillation (AF) is the most...
ver más
Descripción del proyecto
Tensor analysis plays a central role in signal processing and machine learning for the representation, analysis, fusion, and classification of data. Responsible for up to 25% of brain strokes, atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia and remains the last great frontier of cardiac electrophysiology. Catheter ablation is the most attractive therapeutic option for persistent AF, although the identification of suitable target areas is strongly dependent on practitioner’s subjectivity. Multi-electrode catheters are increasingly used in ablation as they facilitate the electroanatomical mapping of the atria, but often deliver incomplete data due to lack of contact with the atrial wall. This project aims to improve the personalized characterization and management of AF by proposing novel tensor-based methods for multimodal data fusion in a possibly missing information scenario. New coupled tensor models will be introduced for effectively coupling multimodal information and robust optimization algorithms will be developed for retrieving unknown/unavailable information. It is expected that the optimal exploitation of invasive (intracardiac EGM) and noninvasive (surface ECG) records will allow the automatic identification of the best targets for successful ablation. Encouraging preliminary results have been obtained with the block-term decomposition (BTD) to handle multiple time segments of the ECG for the blind separation of the atrial activity signal. The contribution of EGM into the ECG will be identified by analyzing the common factors obtained by the proposed coupled tensor decompositions. Extensions of coupled BTD to multimodal, possibly missing data will also be proposed. Expected impacts lie in original tensor models and algorithms for data fusion and tensor completion, leading to novel descriptors of AF that can significantly advance the understanding of this prevalent cardiac condition and derive patient-tailored ablation protocols.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.