Digital Twinning for Personalized Atrial Fibrillation Care
The goal of the TwinCare-AF project is to develop innovative core methodologies for accurate and real-time calibration of cardiovascular electrophysiological models and to support medical decisions in the context of atrial fibrill...
The goal of the TwinCare-AF project is to develop innovative core methodologies for accurate and real-time calibration of cardiovascular electrophysiological models and to support medical decisions in the context of atrial fibrillation and catheter ablation therapy planning. The proposed approach will focus on the generation of digital twins of patient hearts, calibrated through robust and efficient machine learning techniques, and able to replicate measured clinical data, such as electrocardiogram and electrogram recordings. Specifically, physics-informed and/or deep-learning techniques will be extended and implemented within the context of anatomically-accurate and biophysically-detailed cardiac electrophysiology, to accelerate the solution of classical forward electrophysiological model, and to solve inverse problems for identifying patient-specific physical and tissue properties of the heart. Additionally, a robust methodology for verification, validation, and uncertainty quantification will be adopted to showcase the agreement between model predictions and empirical observations, and to provide reliable estimates of confidence in the model predictions. The developed approach will be used to predict atrial fibrillation progression and determine potential ablation sets for individual patients. The predictions of the developed model will undergo testing through in vivo intraoperative clinical measurements. To enhance easy flow, robust analysis, and interpretation of patient-specific data, the novel real-time mathematical workflow for atrial fibrillation simulations will be integrated into a clinically viable platform. These tasks will leverage leading-edge mathematical methodologies, improve the observation-to-diagnosis clinical process by efficiently handling patient-specific data, and support therapy planning, ultimately enabling a scalable translation to large population cohorts.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.