Molecular and cellular investigation of neuron astroglia interactions Understan...
Molecular and cellular investigation of neuron astroglia interactions Understanding brain function and dysfunction
Astroglial cells are now recognized as active elements in the brain that sense and integrate synaptic signals and, by releasing gliotransmitters, regulate synaptic efficacy and cerebral blood flow. Despite accrued knowledge, many...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
AstroFunc
Molecular Studies of Astrocyte Function in Health and Diseas...
1M€
Cerrado
ASTROSYN
Roles of astrocytes in synaptic transmission and plasticity
100K€
Cerrado
ASTROMNESIS
The language of astrocytes multilevel analysis to understan...
3M€
Cerrado
PlasticAstros
Plasticity at the tripartite synapse an in vivo study of as...
235K€
Cerrado
MICRO-COPS
Microglia Control of Physiological Brain States
10M€
Cerrado
RYC2021-033202-I
Astrocyte-neuron molecular and structural interactions contr...
236K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Astroglial cells are now recognized as active elements in the brain that sense and integrate synaptic signals and, by releasing gliotransmitters, regulate synaptic efficacy and cerebral blood flow. Despite accrued knowledge, many fundamental aspects of neuron-astroglia partnerships remain open, or have been poorly addressed in a functional context in vivo. For example, does astroglia heterogeneity reflect distinct functions? How do astroglial and neuronal networks interact locally and temporally? How does disruption of neuron-glia interactions contribute to brain disorders? Leading European research groups in the field have gathered in NeuroGLIA to address such questions using a multi-disciplinary approach, including transgenic astroglia-subtype specific mice, electrophysiology and high resolution laser scanning microscopy in vitro and in vivo (including awake mice). This will enable the consortium: i) to verify the potential of activated astroglia to signal back to neurons rapidly; ii) to define the spatial-temporal dynamics of neuron–astroglia reciprocal signalling; iii) to clarify the specific function of different astroglial subtypes in modulation of neuronal excitability and transmission, and in the control of neurovascular coupling. NeuroGLIA will also investigate how dysfunction of neuron-astroglia signalling contributes to the pathogenesis of brain disorders, focussing on epilepsy. In animal models of epilepsy, astroglial activity will be analyzed with respect to initiation, maintenance and cessation of epileptiform activity, also in relation to blood flow changes and activation of inflammatory pathways. Importantly, access to living tissue from epilepsy patients, allows NeuroGLIA to investigate neuron-astroglia interactions and its dysregulation in the human brain. NeuroGLIA is thus in the privileged position to unravel fundamental mechanisms of neuron-astroglia signalling in health and disease, opening new perspectives for specific therapeutic strategies.