The brain controls all body functions. At the base of this 'catholic' role are the neurons, cells that generate electrical signals, communicate via synapses and form circuits that execute computing tasks and control behaviour. The...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MG interactions
Towards understanding neuron microglia communication in the...
162K€
Cerrado
MicroSynCom
Mechanisms of Microglia Synapse Communication
2M€
Cerrado
NEUROGLIA
Molecular and cellular investigation of neuron astroglia int...
4M€
Cerrado
SAF2013-45084-R
RELEVANCIA TERAPEUTICA DE LA SEÑALIZACION POR RECEPTORES DE...
393K€
Cerrado
MICROGLIA-CIRCUIT
Microglia action towards neuronal circuit formation and func...
2M€
Cerrado
INTERIMPACT
Impact of identified interneurons on cellular network mechan...
2M€
Cerrado
Información proyecto MICRO-COPS
Duración del proyecto: 75 meses
Fecha Inicio: 2021-02-24
Fecha Fin: 2027-05-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The brain controls all body functions. At the base of this 'catholic' role are the neurons, cells that generate electrical signals, communicate via synapses and form circuits that execute computing tasks and control behaviour. The electrical signalling pattern of neurons is the information code of the brain and the synapse connectivity determines circuit function. This is, in brief, what most textbooks emphasise, but such a neuron-centred brain view is precariously short-sighted.
Apart from neurons, the brain contains three glia cell types (from Greek 'γλία' for 'glue'): astrocytes, oligodendrocytes, and microglia. But far from being mere 'glue', astrocytes and oligodendrocytes have multiple critical functions in the brain, accordingly affect many brain processes - even genuine computing tasks - and have therefore become a major focus of modern neuroscience.
Microglia are the 'odd one out'. They are brain-resident immune cells, act as defence against pathological insults and have a housekeeping function as phagocytes. Aside from these functions, microglia seem to play an as yet unrecognized role by engaging in reciprocal signalling with neurons. It is this Microglia Control of Physiological Brain States we will study in MICRO-COPS, based on the hypothesis that microglia purposively control neuronal function. We will combine mouse genetics with cutting-edge gene expression analysis and cell biological, electrophysiological, and imaging technologies to define the reciprocal microglia-neuron signalling pathways, the signalling molecules involved, the biological consequences for microglia and neurons, and the role of the corresponding signalling processes in synapse physiology, neuronal integration, circuit dynamics, and behaviour. We expect that the mechanistic description of reciprocal microglia-neuron interactions - from synapses to circuits - will establish a new and critically important brain regulatory process and provide key insights into brain pathology.