Modelling Text as a Living Object in Cross-Document Context
Interpreting text in the context of other texts is very hard: it requires understanding the fine-grained semantic relationships between documents called intertextual relationships. This is critical in many areas of human activity,...
Interpreting text in the context of other texts is very hard: it requires understanding the fine-grained semantic relationships between documents called intertextual relationships. This is critical in many areas of human activity, including research, business, journalism, and others. However, finding and interpreting intertextual relationships and tracing information throughout heterogeneous sources remains a tedious manual task. Natural language processing (NLP) fails to adequately support it: mainstream NLP considers texts as static, isolated entities, and existing approaches to cross-document understanding focus on narrow use cases and lack a common, theoretical foundation. Data is scarce and difficult to create, and the field lacks a principled framework for modelling intertextuality.
InterText breaks new ground by proposing the first general framework for studying intertextuality in NLP. We instantiate our framework in three intertextuality types: inline commentary, implicit linking, and semantic versioning. We produce new datasets and generalizable models for each of them. Rather than treating text as a sequence of words, we introduce a new data model that naturally reflects document structure and cross-document relationships. We use this data model to create novel, intertextuality-aware neural representations of text. While prior work ignores similarities between different types of intertextuality, we target their synergies. Thus, we offer solutions that scale to a wide range of tasks and across domains. To enable modular and efficient transfer learning, we propose new document-level adapter-based architectures. We investigate integrative properties of our framework in two case studies: academic peer review and conspiracy theory debunking. InterText creates a solid research platform for intertextuality-aware NLP crucial for managing the dynamic, interconnected digital discourse of today.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.