Mechanistic studies of metal dependent DNA cleavage in Type II topoisomerase tow...
Mechanistic studies of metal dependent DNA cleavage in Type II topoisomerase toward the rational design of novel anticancer drugs
Type II topoisomerase (TopoII) metalloenzymes are crucial in regulating DNA topology in replication, transcription, recombination, and repair processes. TopoII is thus a validated target for clinical antibiotics and anticancer dru...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TOPCANBIOX
Structural and functional studies of eukaryotic and prokaryo...
100K€
Cerrado
MYCinTOPshape
Mechanism and targeting of topoisomerase regulatory interact...
2M€
Cerrado
SAF2017-89619-R
PAPEL DE LA TOPOISOMERASA II EN LA ORGANIZACION, EXPRESION Y...
290K€
Cerrado
TOPO
Structural studies of the yeast Topoisomerase III RMI1 Sgs1...
173K€
Cerrado
TOPO2_REPAIR
Repair mechanisms of topoisomerase II DNA lesions
2M€
Cerrado
SAF2010-21017
ROTURAS EN EL ADN PRODUCIDAS POR TOPOISOMERASAS: RELACION CO...
194K€
Cerrado
Información proyecto Targeting TopoII
Duración del proyecto: 32 meses
Fecha Inicio: 2017-02-09
Fecha Fin: 2019-11-05
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Type II topoisomerase (TopoII) metalloenzymes are crucial in regulating DNA topology in replication, transcription, recombination, and repair processes. TopoII is thus a validated target for clinical antibiotics and anticancer drugs. Recent high-resolution X-ray structures of the TopoII/DNA complex showed multiple metal ions bound to the TopoII active site. On the basis of these novel findings, a unified two-metal-ion reaction mechanism for TopoII catalysis has been proposed. However, it is still not clear how this Mg-aided two-metal-ion mechanism permits TopoII to cleave and relegate back DNA strands. Building on our previous studies on metalloenzymes, we seek here to clarify TopoII’s two-metal-aided enzymatic mechanism and identify novel TopoII inhibitors, thus completing the proposer’s computational skill set, boosting her chances of establishing and leading soon an independent computational group. We propose two objectives: First, we will depict the reaction path connecting the enzymatic reactants and products in TopoII. We will achieve this using state-of-the-art computational methodologies such as molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations coupled to enhanced sampling techniques for free-energy estimates. We will thus elucidate the metal ion dynamics in TopoII catalysis, together with the metal-induced structural changes that affect the reactivity and efficiency of TopoII catalysis. Importantly, we will investigate TopoII catalysis in the presence of either the catalytic Mg or inhibitory Zn ions in the catalytic pocket. Secondly, we will integrate mechanistic insights on TopoII catalysis with the recent structural and biophysical data on TopoII to decipher drug resistance and identify new TopoII inhibitors. To this end, docking and MD simulations will be used to facilitate the discovery of potent TopoII inhibitors as a first step toward more effective anticancer drugs and new, urgently needed antibiotics.