Manipulating Acoustic wavefronts using metamaterials for novel user interfaces
In this project we will leverage developments in acoustic meta-materials to build interactive systems that manipulate sound to create experiences with the same ease and fidelity as we are so accustomed to doing with light. This in...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Metasonics
Examining the use of Metamaterials for acoustic applications
150K€
Cerrado
PHONOMETA
Frontiers in Phononics Parity Time Symmetric Phononic Metam...
1M€
Cerrado
OCOMM
Optical control over multi-membrane materials
223K€
Cerrado
FIS2015-65998-C2-2-P
ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMAT...
95K€
Cerrado
PRE2018-085562
ABSORCION ACUSTICA CUASI-PERFECTA EN BANDA ANCHA CON METAMAT...
93K€
Cerrado
PRE2018-084974
ABSORCION ACUSTICA CUASI-PERFECTA EN BANDA ANCHA CON METAMAT...
93K€
Cerrado
Información proyecto Interfaces
Duración del proyecto: 75 meses
Fecha Inicio: 2018-04-26
Fecha Fin: 2024-07-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In this project we will leverage developments in acoustic meta-materials to build interactive systems that manipulate sound to create experiences with the same ease and fidelity as we are so accustomed to doing with light. This involves designing and evaluating new acoustic meta-materials AND building interactive systems that create novel interaction experiences that were hitherto impossible to achieve.
We will use acoustic metamaterials technology to build a Spatial Sound Modulator (SSM) that aims to be a software controlled device that transforms an input acoustic wave into a time-variable, user-defined acoustic field. SSM comprises of a surface made of electronically adjustable acoustic metamaterial bricks. Each brick in the surface can individually vary the phase of an incident acoustic field, to shape the complex output field.
Our objectives are:
1. Design, implement and evaluate dynamically reconfigurable metamaterial unit-cells and surfaces using transmissive modes of operation. We will explore narrow-band devices for air-borne operation at low ultrasonic frequencies (e.g. 40 kHz).
2. Design SSMs from a spatial distribution of metamaterial unit cells. Specifically, we will identify discretization strategies, digital control mechanisms and develop concepts that are efficient and reduce field reconstruction errors while at the same time constructing the SSM from a small set of reconfigurable metamaterial unit-cells.
3. Create multiple application-specific prototypes of the SUM and identify context specific design constraints and trade-offs.