MAGNETIC HYPERTHERMIA FOR METASTASIZED TUMOR TREATMENT AND REMOTE MANIPULATION O...
MAGNETIC HYPERTHERMIA FOR METASTASIZED TUMOR TREATMENT AND REMOTE MANIPULATION OF MICRODEVICES
In magnetic hyperthermia (MHT), magnetic nanoparticles (MNPs) convert magneto-energy into heat under a time-varying magnetic field. MHT with MNPs is used in catalysis to promote reactions in solution and in cancer therapy, to ‘bur...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-112685RB-I00
NANOMEDICINAS BASADAS EN NANOPARTICULAS PARA INMUNOTERAPIA E...
249K€
Cerrado
MAT2013-42551-P
NANOVECTORES MAGNETICOS PARA CONFINAMIENTO CELULAR E HIPERTE...
74K€
Cerrado
MAGNOSTICS
Biomimetic MAGnetic nanoparticles with homotypic targeting f...
173K€
Cerrado
PID2020-115704RB-C32
GUIADO Y CONTROL DE BACTERIAS MAGNETOTACTICAS PARA TERAPIAS...
105K€
Cerrado
TheranoXome
Engineered Exosomes for Stimuli-responsive Image-guided Drug...
181K€
Cerrado
PDC2022-133028-I00
NUEVA GENERACION DE HIPERTERMIA MAGNETICA PARA TERAPIAS CONT...
138K€
Cerrado
Información proyecto GIULIa
Duración del proyecto: 67 meses
Fecha Inicio: 2022-06-23
Fecha Fin: 2028-01-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In magnetic hyperthermia (MHT), magnetic nanoparticles (MNPs) convert magneto-energy into heat under a time-varying magnetic field. MHT with MNPs is used in catalysis to promote reactions in solution and in cancer therapy, to ‘burn’ primary tumors in clinic, e.g. Glioblastoma, upon deposition of nanoparticles at the tumor site. The power of MHT, being an externally triggered approach to produce heat, goes beyond these actual uses. In GIULIa project I will apply MHT in tasks not yet explored to target the unmet needs of treatment of metastasized tumors and address MHT-mediated locomotion. MHT treatment of cancer metastases is now not doable because of scarce MNP dose accumulation at the spreading tumor sites. In GIULIa, MNPs designed for MHT, will be loaded in/on natural killer (NK) immune cells, which, intravenously injected, will deliver as Trojan horses the right dose of magnetic materials needed for MHT to the metastases. I will aim at raising the capability of NK and CAR-NK immune cells to infiltrate and recognize the tumor. This will merge synergic toxic effects of NK cells immunotherapy with MHT-heat damage of MNPs.
Next, magnetic microdevices and their remote locomotion based on MHT-heat gradient, represent a new technological solution for delivery purposes with no tissue-depth attenuation for their actuation. Under MHT, I will explore the localization of heat spots on metallic magnetic-based heterostructures as a means to generate bubbles in a liquid and drag an ad hoc designed magnetic-microdevices to which the heterostructures are anchored. For the scale-up synthesis of metallic-magnetic heterostructures needed for the microdevices, I will merge an in-flow approach to an MHT-route synthesis. The heat at the MNP surface will be used as an in situ energy source to promote the growth of the metallic domain on the MNP. Advanced NK cells and microdevice technology of GIULIa will impact the medical fields of MNP/drug delivery, immunotherapy and smart robotics.