Machine-Assisted Teaching for Open-Ended Problem Solving: Foundations and Applic...
Machine-Assisted Teaching for Open-Ended Problem Solving: Foundations and Applications
Computational thinking and problem solving skills are essential for everyone in the 21st century, both for students to excel in STEM+Computing fields and for adults to thrive in the digital economy. Consequently, educators are put...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto TOPS
Duración del proyecto: 61 meses
Fecha Inicio: 2022-02-14
Fecha Fin: 2027-03-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Computational thinking and problem solving skills are essential for everyone in the 21st century, both for students to excel in STEM+Computing fields and for adults to thrive in the digital economy. Consequently, educators are putting increasing emphasis on pedagogical tasks in open-ended domains such as programming, conceptual puzzles, and virtual reality environments. When learning to solve such open-ended tasks by themselves, people often struggle. The difficulties are embodied in the very nature of tasks being open-ended: (a) underspecified (multiple solutions of variable quality), (b) conceptual (no well-defined procedure), (c) sequential (series of interdependent steps needed), and (d) exploratory (multiple pathways to reach a solution). These struggling learners can benefit from individualized assistance, for instance, by receiving personalized curriculum across tasks or feedback within a task. Unfortunately, human tutoring resources are scarce, and receiving individualized human-assistance is rather a privilege. Technology empowered by artificial intelligence has the potential to tackle this scarcity challenge by providing scalable and automated machine-assisted teaching. However, the state-of-the-art technology is limited: it is designed for well-defined procedural learning, but not for open-ended conceptual problem solving. The TOPS project will develop next-generation technology for machine-assisted teaching in open-ended domains. We will design novel algorithms for assisting the learner by bridging reinforcement learning, imitation learning, cognitive science, and symbolic reasoning. Our theoretical foundations will be based on a computational framework that models the learner as a reinforcement learning agent who gains mastery with the assistance of an automated teacher. In addition to providing solid foundations, we will demonstrate the performance of our techniques in a wide range of pedagogical applications.