Longitudinal Integrative Models for Online Relapse Detection
The goal of my project is to propose a novel statistical tool allowing patient classification, earlier relapse detection and better prognosis estimation in order to move forward into personalized medicine in Multiple Myeloma. To t...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-100789-B-I00
METODOS ESTADISTICOS Y ALGORITMOS EFICIENTES PARA EL ANALISI...
35K€
Cerrado
SMAC
Statistical machine learning for complex biological data
1M€
Cerrado
MTM2010-16087
INFERENCIA ESTADISTICA BAJO INCERTIDUMBRE EN LOS MODELOS: AP...
7K€
Cerrado
TIN2011-22826
MODELOS MARKOVIANOS GRAFICOS DE ORDEN LIMITADO PARA DATOS DE...
42K€
Cerrado
MLFPM2018
Machine Learning Frontiers in Precision Medicine
4M€
Cerrado
MEDIASRES
Novel Statistical Methodology for Diagnostic Prognostic and...
4M€
Cerrado
Información proyecto LIMORD
Duración del proyecto: 51 meses
Fecha Inicio: 2020-04-15
Fecha Fin: 2024-07-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The goal of my project is to propose a novel statistical tool allowing patient classification, earlier relapse detection and better prognosis estimation in order to move forward into personalized medicine in Multiple Myeloma. To this aim, I will develop new statistical models and computational schemes to incorporate large follow-up omics datasets in a decision framework. As a statistician coming from theoretical mathematics, this project will provide me a unique opportunity to acquire new knowledge in biology and new supervision skills in order to translate theoretical mathematical results into real added value in the way we treat patients.
The first challenge I will address is the development of statistical methods based on Variational Auto-Encoders to integrate multiple omics data-type at multiple time-points. My model will have to be flexible enough to allow for missing data (for instance a full omic dataset missing at a given time point due to experiment failure) and to accommodate for data acquired in an online manner. The second challenge I will address is the development of quality metrics and analysis methods for direct RNA sequencing data from patient samples. The third challenge I will address concerns the numerical inference difficulties of Partially Observable Markov Decision Processes when the dimension of the data increases. Approximation strategies will be investigated to make use of the high-dimensional, heterogeneous biological data in a relapse detection framework. Finally, I will develop a software package incorporating our results intended to help clinicians take the optimal decision when treating their patients.
An important aspect of my project is to integrate it both to a biological laboratory in Australia and a mathematical group in France, together with a collaboration with clinicians in a French hospital, hence I will carry out the entire process of designing the statistical tool and its software package for a concrete use in the clinic.