Lepton Symmetry Experiment – matter / antimatter symmetry test with electron and...
Lepton Symmetry Experiment – matter / antimatter symmetry test with electron and positron
In modern physics we are faced with the unsatisfactory situation that the Standard Model (SM), which condenses our current state of knowledge in the form of quantum field theories, despite its spectacular success in the prediction...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
QuHAMP
A quantum hybrid of atoms and milligram-scale pendulums: tow...
2M€
Cerrado
PRE2020-091835
BUSQUEDA DE NUEVA FISICA (EN LA UB) CON SABOR EN EL EXPERIME...
99K€
Cerrado
FPA2017-85140-C3-2-P
BUSQUEDA DE NUEVA FISICA CON SABOR EN EL EXPERIMENTO LHCB DE...
230K€
Cerrado
PID2021-128396NB-I00
MATERIA OSCURA, FISICA DEL HIGGS Y TEORIAS DE CAMPOS EFECTIV...
90K€
Cerrado
RYC2019-028510-I
Física experimental de partículas (CERN/LHC): física del qua...
309K€
Cerrado
PGC2018-095161-B-I00
PARTICULAS, ASTROPARTICULAS Y MATERIA OSCURA EN EL UNIVERSO
97K€
Cerrado
Información proyecto LSYM
Duración del proyecto: 67 meses
Fecha Inicio: 2023-04-26
Fecha Fin: 2028-11-30
Descripción del proyecto
In modern physics we are faced with the unsatisfactory situation that the Standard Model (SM), which condenses our current state of knowledge in the form of quantum field theories, despite its spectacular success in the prediction of laboratory results, fails in explaining even the most basic properties of our Universe, such as the disparity of matter and antimatter and the possible existence of dark matter. In the quest to search for answers to these questions, low energy, high precision experiments in ion traps have taken a pivotal role by allowing precise tests of the charge, parity and time (CPT) reversal symmetry.
I propose an ambitious, next-generation Penning-trap experiment that will enable us to directly compare the magnetic moments of electron and positron at 14 digits precision. To this end, we will simultaneously trap a single positron and an electron in the same trap and directly compare their spin precession frequencies. To enable the co-trapping of the oppositely charged particle and antiparticle, we will bind the electron in a hydrogenlike 4He+ ion. As a result of the binding, the spins of both particles show a slow beat, which can be accurately measured. Any deviation of this beat frequency from the prediction by quantum electrodynamics (QED) reveals a CPT violation. This way, LSYM will enable a uniquely sensitive comparison of particle and antiparticle charge, mass and g-factors and thus yield the most stringent CPT test in the lepton sector.
To this end, we will develop a novel, superconducting Penning trap apparatus, which can be cooled to millikelvin temperatures to largely eliminate black-body radiation. Building upon techniques recently pioneered by my group, LSYM will allow the coherent quantum measurement of the difference of the spin precession frequencies.
Furthermore, with this toolbox at hand, we will have access to a new class of intriguing measurements, such as an order of magnitude improved determination of the electron atomic mass.