Innovating Works

LSYM

Financiado
Lepton Symmetry Experiment – matter / antimatter symmetry test with electron and...
Lepton Symmetry Experiment – matter / antimatter symmetry test with electron and positron In modern physics we are faced with the unsatisfactory situation that the Standard Model (SM), which condenses our current state of knowledge in the form of quantum field theories, despite its spectacular success in the prediction... In modern physics we are faced with the unsatisfactory situation that the Standard Model (SM), which condenses our current state of knowledge in the form of quantum field theories, despite its spectacular success in the prediction of laboratory results, fails in explaining even the most basic properties of our Universe, such as the disparity of matter and antimatter and the possible existence of dark matter. In the quest to search for answers to these questions, low energy, high precision experiments in ion traps have taken a pivotal role by allowing precise tests of the charge, parity and time (CPT) reversal symmetry. I propose an ambitious, next-generation Penning-trap experiment that will enable us to directly compare the magnetic moments of electron and positron at 14 digits precision. To this end, we will simultaneously trap a single positron and an electron in the same trap and directly compare their spin precession frequencies. To enable the co-trapping of the oppositely charged particle and antiparticle, we will bind the electron in a hydrogenlike 4He+ ion. As a result of the binding, the spins of both particles show a slow beat, which can be accurately measured. Any deviation of this beat frequency from the prediction by quantum electrodynamics (QED) reveals a CPT violation. This way, LSYM will enable a uniquely sensitive comparison of particle and antiparticle charge, mass and g-factors and thus yield the most stringent CPT test in the lepton sector. To this end, we will develop a novel, superconducting Penning trap apparatus, which can be cooled to millikelvin temperatures to largely eliminate black-body radiation. Building upon techniques recently pioneered by my group, LSYM will allow the coherent quantum measurement of the difference of the spin precession frequencies. Furthermore, with this toolbox at hand, we will have access to a new class of intriguing measurements, such as an order of magnitude improved determination of the electron atomic mass. ver más
30/11/2028
MPG
2M€
Duración del proyecto: 67 meses Fecha Inicio: 2023-04-26
Fecha Fin: 2028-11-30

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-04-26
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2022-ADG: ERC ADVANCED GRANTS
Cerrada hace 2 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
MAXPLANCKGESELLSCHAFT ZUR FORDERUNG DER WISSE... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5