A quantum hybrid of atoms and milligram-scale pendulums: towards gravitational q...
A quantum hybrid of atoms and milligram-scale pendulums: towards gravitational quantum mechanics
Does gravity obey the laws of quantum mechanics? Can gravitational fields exist in superposition states or mediate entanglement? These questions lie at the frontier of physics and have crucial implications –affirmation would cons...
Does gravity obey the laws of quantum mechanics? Can gravitational fields exist in superposition states or mediate entanglement? These questions lie at the frontier of physics and have crucial implications –affirmation would constitute a union of the gravitational and quantum realms, while negative results would demand a revision of fundamental physical laws. Only recently have we identified potential paths to entertain experiments to address these questions. Daunting technical challenges nevertheless remain.
The objective of this proposal is to enable the observation of quantum signatures in gravitational interactions by developing interacting systems of cold atoms and milligram-scale pendulums. This objective will be addressed with three concrete goals:
–Goal A: Gain unparalleled control over quantum behavior of massive objects by pioneering light-mediated artificial interactions between atoms and milligram-scale masses
–Goal B: Observe for the first time the gravitationally driven dynamics of a pair of masses that behave quantum mechanically
–Goal C: Demonstrate the basic tenets of entanglement mediated by force fields of macroscopic objects utilizing electrostatic interactions
The key to achieving the objective is to induce unprecedented levels of quantum delocalization for a massive object. The core novelty of this project is to use an atomic ensemble as a quantum regulator of radiation pressure acting on a massive object. With interactions of two copies of such a system, the project will set the stage for gravitationally mediated entanglement – archetypal quantum signature. This approach builds on techniques to control atomic ensembles in optical cavities, where the PI has demonstrated world-leading results. Though inherently high risk, this proposal lays out a conceivable path toward shedding light on some of the most fundamental questions in contemporary physics.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.