Late First Row Transition Metal Oxo Complexes for C H Bond Activation
The chemical, pharmaceutical, and materials industries rely heavily upon chemicals from oil and natural gas feed-stocks (saturated hydrocarbons) that require considerable functionalisation prior to use. Catalytic oxidative functio...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MethanGold
Activation of Methane and Other Alkanes with Electrophilic G...
84K€
Cerrado
2O2ACTIVATION
Development of Direct Dehydrogenative Couplings mediated by...
1M€
Cerrado
CTQ2011-28258
CATALISIS ORGANOMETALICA: FUNCIONALIZACION DE ENLACES C-H
240K€
Cerrado
FarCatCH
Innovative Strategies for Unprecedented Remote C H bond Func...
1M€
Cerrado
CTQ2016-77989-P
PLATAFORMAS MODELO PARA LA COMPRESION MECANISTICA DE FUNCION...
163K€
Cerrado
PID2019-104159GB-I00
SISTEMAS ORGANOMETALICOS PARA TRANSFORMACIONES ESTEQUIOMETRI...
61K€
Cerrado
Información proyecto HurdlingOxoWall
Duración del proyecto: 74 meses
Fecha Inicio: 2015-12-15
Fecha Fin: 2022-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The chemical, pharmaceutical, and materials industries rely heavily upon chemicals from oil and natural gas feed-stocks (saturated hydrocarbons) that require considerable functionalisation prior to use. Catalytic oxidative functionalisation (e.g. CH4 + [O] + cat. → CH3OH), using first row transition metal catalysts, is potentially a sustainable, cheap, and green route to these high-commodity chemicals. However, catalytic oxidation remains a great modern challenge because such hydrocarbons contain remarkably strong inert C–H bonds that can only be activated with potent catalysts. We will take a Nature-inspired approach to designing and preparing powerful oxidation catalysts: we will interrogate the active oxidant, a metal-oxo (M=O) species, to guide our catalyst design. Specifically, we will prepare unprecedented Late first-row transition Metal-Oxo complexes (LM=O’s, LM = Co, Ni, Cu) that will activate the strongest of C–H bonds (e.g. CH4).
This will be accomplished using a family of novel low coordinate ligands that will support LM=O’s. Due to their expected potent reactivity we will prepare LM=O’s under unique oxidatively robust, low-temperature conditions to ensure their stabilisation. The poorly understood factors (thermodynamics, metal, d-electron count) that control the reactivity of M=O’s will be thoroughly investigated. Based on these investigations LM=O reactivity will be manipulated and optimised. We expect LM=O’s will be significantly more reactive than any early transition metal-oxo’s (EM=O’s), because they will display a greater thermodynamic driving force for C–H activation. It is thus expected that LM=O’s will be capable of the activation of the strongest of C–H bonds (i.e. CH4). Driven by the knowledge acquired from these investigations, we will design and prepare the next generation of molecular oxidation catalysts - a family of late first-row transition metal compounds capable of catalysing hydrocarbon functionalisation under ambient conditions.